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Executive Summary

The major progress of note for this period is as follows:

L

Regular Expression Compilation. The overall goal of the project is to develop silicon compilers
that produce output comparable to hand designs. A compiler for translating a mixture of state
machine definition and regular expressions into networks of PLA’s or logic is working. In a
number of tests the area required by the output was found to be no more than 50% over that of a
hand design; in some cases the results are far closer than that.

. MIPS: A VLSI Processor. MIPS (Microprocessor without Interlock between Pipc Stages) is a

project to develop a high speed (> 1 MIP) single chip 32-bit microprocessor. The final test chips
for thc MIPS processor design were completed and will be submitted for fabrication on the
November 82 MOSIS fabrication run.

. Relative Layout Tools. Yale (Yet Another Layout Editor) is a symbolic layout editor that will run

on the SUN and make the capabilities of SILT available in a graphics front-end. The first version
of Yale was completed and documented.

. Graphics Architectures. The IRIS is a high-resolution, high-performance, color-graphics

workstation. It incorporates the Geometry Engine and utilizes the SUN processoir board. An
IRIS prootype was designed and demonstration software was developed.

. Computer supported FTL launched. We have completed the planning and exploratory stages of a

project to provide ecxtensive automation and computer support for the Fast Turnaround
Laboratory. This ambitious intcrdisciplinary project (involving researchers from Computer
Systems, Integrated Circuits, and Solid Statc laboratorics) will provide control, documentation,
training, portability, repcatability, and efficicncy in the area of IC fabrication processes.

. Palladio; An IC Designer’s Assistant The Palladio system is a framework for experimentation

with circuit design methodologics, knowledge-based expert system design aids and symbolic
circuit simulation concepts. The major goal of the project is to develop an intclligent and
integrated circuit design environment to assist in the full design, test and debug design cycle.
During the past six months Palladio’s basic system structure was complcted and several prototypic
system components were implemented,

. Electron Beam Lithography. The Stanford MEBES machine has passed all on-site acceptance

tests, including those rclating to direct writing and registration accuracy. The MEBES machine is
currently being used to fabricate masks for the Geometry Enginc, several MIPS test chips, and the
two-chip Mcdium ‘Tester.

. 2 Micron CMOS. Test devices using Stanford’s 2 um CMOS process have been fabricated. This

process features a 4 pm n-well and a 400 Angstroin oxide thickness. Two additional "tunc-up”
runs are in progress at the moment. The mask set for this run was writien at Perkin-Elmer/ETEC
before our machine passed acceptance, but plates were developed and etched at Stanford.

. Wafer [labrication Facility. The following pieces of cquipment have been installed and

characterized and arc now being used in the fabrication of NMOS/CMOS wafers: Drytek 100
plasma ctcher (Poly-Si and Si;N): Tylan LPCVD (Poly-Si, Si;)N,, and LT Si0.); MTI Omni-
Chuck resist processing: 1PC 2{80 plasma ctcher (Si0,); and Ultratech 900 1:1 projection aligner.
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10. Tri-Level Resist Technology. A tri-level resist technology designed for direct-write E-beam
lithography has been developed. The three layers are: 1.2 pm "super-hard-baked" AZ-1470 resist,
500 Angstrom sputtered or plasma-deposited poly-Si, and 0.4 um PBS electron resist. The key
step in this process is the use of O, reactive ion etching (RIE) to transfer to pattern from the thin
PBS and poly-Si layers to the underlying "planarization” layer of AZ-1470 resist. Resist lines 0.5
pm wide separated by 0.5 pm have been produced by the highly anisotropic RIE.

11. Testing for Process Control. A number of test structures have been designed which allow statistical
data to be gathered about many of the parameters affecting fabrication yield including step
coverage, shorts (both level-to-level and on a single level), contact hole integrity, etc. In contrast
to many of the "string” or "meander” structures, these test vehicles are addressable in such a way
as to allow the position information of failures to be monitored.

12. Electrically based layout system, Lava. A rewritten version of Lava is again running test cases,
including the 10,000-transistor serial memory. It seems stable enough to support further
investigations, e.g., composition of cells and logic-to-sticks conversion.

13. Logic-to-sticks conversion, Dumbo. Dumbo produced its first totally automatic layouts with
reasonable area efficiency, using force-dirccted placement. Large cells still incur large arca
penalties, however.

14. The MEDIUM tester chip set. The MEDIUM tester chip set has been designed, laid out, and
submitted for fabrication, along with some test chips. Onc of the two main chips has bcen
partially tested, and it appears to be correct.

15. Bulk CMOS. We have implemented a CMOS design-rule checker based on the polygon package
and distributed it to MIT and JPL.. It was used to check pads, PLAs, and a counter submitted for
fabrication; it has also checked layouts from MIT and Lincoln Labs.
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Technical Progress

1 Design Description, Analysis, and Synthesis

C‘f Regular Expression Compilation
i

i

A

system compiling regular expressions into PLA's or logic has been developed. The input language has
been augmented recently to include state declarations when convenient; in the syntax, entering a state looks
similar to the occurrence of an input symbol, while transfer to a state is akin to emitting an output symool.

The regular expression language is translated to a nondeterministic finite automaton (NFA) language by
one of two different compiler strategies, called “before” and “after.” The former tends to minimize the
number of rows of a PLA, whilc the latter tends to minimize the columns. Neither strategy dominates the
other in tests, so both are made available as options for the user, 3 e P Q.

The NFA’s are compiled into networks of PLA’s or Weinberger arrays (via S. Johnson’s Igen language).
The PLA’s are optimized using GRY [Hemachandra 82]. Layout of PLA's is accomplished by PLAGEN, a
routine written in CHISEL [Karplus 82). The latter two facilities are the product of K. Karplus, a Hertz
fellow whose DARPA support consisted of com:puter services.

Staff: L. Hemachandra, A. Karlin, H. Trickey, J. Ullman
Related Efforts: gen (Bell Labs), SLIM (Stanford)

References: [Hemachandra 82, Floyd 82, Trickey 82, TrickcyUllman 82, Uliman 82a)

1.2 YALE

Yale (Yet Another Layout Editor) is a symbolic layout editor that will run on the SUN and make the
capabilitics of SILT available in a graphics front-end. YALE is presently being implemented on a
combination of the SUN workstation and the VAX. [t uscs the SUN as an intelligent graphics workstation (no
disc required); thus, this work is being carried out in collaboration with the Network Graphics project at
Stanford. YALE is primarily a graphics interface to SILT, allowing the placement of reference lines
graphically. It also allows textual or graphical specification of constraints and textual specification of
expressions for computation of reference line placement,

. Staff: J. Clark, T. Davis
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Related Efforts: Dacdalus and the Data Path Generator (MIT), Caesar (UCB).

References: [Davis, T. and Clark, J. 82]

1.3SLIM

SLIM, Stanford language for Implementing Microcode, was initially implemented during an earlier
contract and presented at the 1981 Caltech VLSI Conference. The goals of SLIM are to describe on-chip
control as microcode, to simulate that microcode using a functional description of the chip components, and
to generate a PLLA implementation of the microcode. The initial SLIM implementation has been working
since the end of 1980.

The current work on SLIM concentrates on the design of a state-assignment optimizer. A prototype
optimizer, which saves an average of 15% of the minterms, has been developed. It needs further work to

characterize its theortical properties and to make it more efficient on large PLA's.
Staff: J. Hennessy, [.. Adams

Related Efforts: MacPitts (Lincoln Labs), SLANG (UCB) and SLAP (Brown University).

1.4 Palladio: An IC Designer’s Assistant

The Palladio system [Brown 82] is a framework for experimentation with circuit design methodologies,
knowledge-based expert system design aids and symbolic circuit simulation concepts. The major goal of the
project is to develop an intelligent and integrated circuit design environment to assist in the full design, test
and dcbug cycle. Palladio serves as the focus for the Knowledge-based VLSI Project (KBVLSI project), a
collaborative activity between the Heuristic Programming Project, Stanford University, the VLSI System
Design Area, Xerox Palo Alto Rescarch Center and the Fairchild Laboratory for Artificial Intelligence
Research.

1.4.1 Design Specification Editor

A circuit design process can be viewed as the creation of behavioral and structural specifications of the
circuit. This usually involves a sequence of transformations from abstract specifications of the behavior and
structurc to more detailed implementation specifications. Palladio’s design cditor is an interactive graphics
system for creating and editing circuit specifications at various levels of structural and behavioral detail. For
example, in Palladio the structure of a circuit component can be simultaneously described in terms of gates, il
terms of switches and in tenns of a layout, and the component’s behavior can be simultancously described in

terms of boolean logic or in terms of node value-strength pairs,
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The level of specification to be used in performing a particular task is currently at the choice of the
designer. We are working on design aids which will automatically select the most appropriate specification
levels for the task at hand, for example, simulation.

During the past six months we have essentially completed the the underlying framework for Palladio’s
design cditor and the graphical user interface to the editor. The graphical interface uses HILGA [Gerring 81),
a high level graphics package for Interlisp-D.

Staff H. Brown, G. Foyster, P. Gerring.

1.4.2 Design Specification Levels

One of the objectives of our project is to experiment with various circuit design specification levels. In
Palladio a design spccification level is primarily represented by structure and/or behavior specification
languages (both graphical and textual) and by a sct of composition rules for governing the recursive creation
of compositc components from the primitives of the specification language [Stefik 82a]. During the past six

months we have implemented two specification levels.

The Clocked Primitive Switches (CPS) level is a structural specification level which includes both circuit
and gate level specifications. In addition the graphical form of the CPS level can be used to describe a planar

topology for the circuit.

Associated with the the CPS structural level are two behavioral specification levels. One is based on the
usual boolean level of behavioral specification and the other is based on node value-strength pairs [Bryant 81].

The user interface form of both of these behavioral levels is production tules.
Staff* H. Brown, G. Foyster.

The Computational Blocks Abstraction (CBA) specification level is a level at which a designer can specify a
digital system in terms of blocks containing data structures and operations.

Staff: C. Tong.

1.4.3 Design Simutator

During the past six months we have been working on a framework for multiple-level, rule-based simulator.
The simulator is not ticd to any particular technology or specification level. The primary idca is to exploit
hicrarchical design descriptions to help manage the simulation of complex systems. The simulator framework

can be used to perform auto-validation of designs, goal-dirccted simulation, and symbolic simulation.
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A preliminary version of the simulator framework has been implemented. This implementation was done
in MACLISP using the Meta-level Representation System (MRS) [Genesercth 80). MRS provides, in
partiular, the simulator’s inferencce mechanisms. :

Staff* N. Singh (Stanford and Fairchild).

The simulator framework has been interfaced with the CPS specification level in Palladio, and a dynamic,
graphical simulator display has been implemented.

Staff: G. Foyster.

1.4.4 Design Transformation

During the past year we have been working on design aids to assist in the transformation of an abstract
design specification to a more detailed implementation. This work has involved research on a model for
design centered around goals, alternative designs and tradeoffs [Tong 82]. This model views design as a
dialectic between goals and design alternatives: goals are established, alternative designs are specified, and
the goals are evaluated with respect to these alternatives and possibly revised in light of the alternatives.
Knowledge of important tradeoffs among goals are used to guide the dialectic.

To support the complex and varying relationships among design entities a design knowledge representation
language, FIRE, has been developed. FIRE is implemented in LOOPS [Bobrow 81].

Staff: C. Tong.

1.4.5 Pragramming Systems

Most of the Palladio system is implemented in LOOPS. LOOPS is a data and object oriented programming
system integrated with Interlisp. In object oriented programming, behavior is determined by responses of
instances of classes to messages sent between these objects with no direct access to the internal structure of an
object. Data oriented programming is a dual of object oriented programming where behavior can occur as a
side effect of direct access to object state.

During the past six months numerous enhancemens and extensions have been made to LOOPS. In
particular, the capability for doing rule oriented programming has been added to LOOPS [Stefik 82b).

Staff: D. Bobrow (Xerox), M. Stefik (Xerox).

Some of the project programming has utilized the GLISP compiler system [Novak 82]. During the past six
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months GLISP has becn extended and made more robust, and a graphics cditor based on GLISP object
descriptions has been developed for the Xerox D1100 Workstation (the Dolphin),

-

The GLISP language has been extended as an experimental hardware description language. This language
allows hardware data structures suct a:, computer instruction formats to be described and used in a natural
way. The GLISP descriptions ar¢ compiled into an intermediate code which is similar to exisiting register

tranfer languages. This intermediate code runs on an interactive simulator using the Dolphin graphics system.

Staff: G. Novak.

1.5 Electrically based layout system, Lava

Lava is an electrically based, general-purpose layout language. Our principal objectives are topological,
rather than geometric, layout description and guaranteed design-rule correctness of layouts, Lava’s major
components are a sticks compactor, cell stretching and abutment mechanisms, a router, and a framework to

link them together.

We have rewritten Lava to stabilize it and to incorporate some of the hooks that will be necessary for
further investigations. We have concentrated on a clean implementation of the aspects that we understand
well, removing some of the more ill-conceived mechanisms in the previous implementation. One major
improvement is that much of the technology-specific information is now centralized; while Lava is not
intended to be technology-independent, this technology file makes it possible to change easily parameters of

the nMOS target process.

The result is a sufficiently stable platform for further investigations, for example, a well-~conceived
composition level and logic-to-sticks conversion. The rewritten Lava now successfully compiles a large

number of test cases, including (very recently) the serial memory chip described in our previous report.
Staf C. Burns, D. Chapiro, P, Eichenberger, R, Mathews, J. Newkirk, D. Perkins, T. Saxe

Related [fforts: EARL. (CalTech), CABBAGE (UCB)

1.6 Routing

We have developed a new, 2-dimensional area router, the loop routing scheme (LRS). LRS handles both
rectangular- and doughnut- shaped routing arcas. LRS is a promising box router for the custom routing
problem because, like the dogleg channel router, it indicates how much expansion of the routing arca is

necessary to complete a given routing,
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The difficulty of channel routing problems, and the performance of channel rousers, may be measured by
the number of wiring tracks required to complcte the routing. Previously, no similar measures existed for
comparing area routers, Such a measure must describe how difficult a given, fixed, area-routing problem is,
since there is no well-defined way to expand the routing arca to guarantce completion of the route.

We have developed an appropriate measure of problem difficulty, the Manhattan Area Measure. By using
it to assess the difficulty of routing problems generated using Monte Carlo techniques, we have compared the
performance of LRS to the classic Lee area-routing algorithm, The LRS has vastly superior performance to
the Lee, successfully routing problems that are twice as dense as those that the Lee will complete successfully,

Staff: T. Saxe, L. Smith
Related Efforts: P project (MIT)

References: [Smith 82)

1.7 Logic-to-sticks conversion, Dumbo

This work is aimed at simplifying the layout of random logic. Some amount of glue is inevitable in a
design, but is is painful to lay out and typically does not consume a significant amount of the total area of the
design. Consequently, we are searching for techniques for converting logic, specified as transistors, gates, and
anet list, to stick diagrams for compaction by Lava.

The logic-to-sticks conversion program Dumbo has now produced some layouts of small cells with
respectably small areas completely automatically. For example, a 12-transistor cell was laid out with no area
penalty when compared to the original hand-drawn sticks. Force-directed placement and orientation of
components made this result possible. However, for larger cells we still see penalties of 100-150%.

We are continuing to analyze the sources of inefficiency in Dumbo layouts. As for our custom-chip router
described in our previous report, a series of small 10% efficiencies cumulate to create a large overall area
penalty. We are analyzing these sources of error to try to understand and control them. However, one major
source of inefficiency appears to be the sensitivity of our sticks compactor to small changes in the stick
diagram. While the human dcsigner copes with these vagaries very well, we do not urderstand them well
enough to permit us to avoid them in automatically generated cells. Nevertheless, we feel we will be able to

make substantial additional progress in this arca.

Stafft R. Mathews, 1. Perkins, W, Wolf
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Related Efforts: Rule-based circuits-to-sticks conversion (A. Bell, PARC)

References: [Wolf 82]
2 VLS| Processor Architecture

2.1 MIPS - A High-Speed Single-Chip VLSI Processor

MIPS (Microprocessor without Interlock between Pipe Stages) is a project to develop a high speed (> 1
MIP) single-chip 32-bit microprocessor. Like the RISC project at Berkeley, MIPS uses a simplified

instruction set and is a load-store architccture.

The MIPS architecture is summarized in a previous technical progress report and is discussed in several
publications. During this six month period, the major goal of the project was to devclop a series of test chips
that would provide a complete test of each major component of the chip individually.

The six test chips contain all the parts needed to implement the complete MIPS processor. Each test chip
also contains additional testing and pin multiplexing hardware. By fully testing thc components before
fabricatiug a comnplete design, the probability of success on the first run is much higher. This approach also
allows us to characterize the indjvdual ¢omponents and make performance adjustments before the final
fabrication. By designing a single reusable test frame, the individual test chips may be constructed from the
exact pieces of the complete chip with a minimal amount of effort. The final assembly process consists of
merely composing the individual test combonents to form the complcte processor. Lastly, this process offers
an idcal opportunity to test the concept of fast-turnaround foundries. Because progress on the project depends
on recciving and testing the chips prior to completing the final design, rcasonable quality, fast-turnaround

fabriction is essential.

The six test chips and their current status is as follows:

L. Register File Test Chip - submitted and tested at both 3 and 4 microns. The 4 micron chips were
functional, although the yicld was <10% (i.c. all parts of the chip worked over 10 dic, but no single
dic was compleicly functional). ‘I'he 3v fabrication produced no working parts,

2. Instruction Decode Test Chip - tested one out of cight die was completely functional.

3. Barrel Shifter Test Chip - preliminary tests from the first fabrication have shown partially working
chips. So far, no definitive problems have becen identified.

4, ALU Test Chip - destined for November submission. Currently running functional simulation.
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. 3. Program Counter Test Chip - version 0 currently in test. Version. 1 in simulation.
6. Master Pipcline Control Test Chip - submitted in October fabrication run. Not returned yet.

Sty F. Baskett, J. Burnett, J. Gill, K. Gopinath, T. Gross, J. Hennessy, N. Jouppi, W. Park, S. Przybylski,
C. Rowen, A, Strong.

Related Efforts: RISC (UCB), IBM 801 (IBM Yorktown), Cray-1I (Cray Research).

References: [HennessyJouppiPrzybylski 82, Gross 82, Hennessy 83]

2.2 Geomatry Engine

The Geometry Engine is a high-performance, floating-point computing enginc for geometric operations in
2D and 3D computer graphics. Multiple copies of the Geometiy Engine provide a parallel computing system

with very high-performanse. (5-10 million floating-point operations per second.)

During this period, we obtained a second fabrication of Geometry Engines. This batch provided enough
chips to build a geometry system (10 chips) and a complete prototype. This prototype system, called the IRIS,
. is discussed in the next section. The Geometry Engine design is completely functional, although the

performance is less than originally predicted.
Staff: ). Clark, M. Hannah

References: [Clark 82]

2.3 IR!S Warkstation

The goal of the IRIS workstation project was to design a high-resolution, color, extra high-performance
graphics workstation that utilized all of the features of the Geometry Engine and was software-compatible
with the SUN 68000 processor (excluding graphics software compatibility). The system consists of

¢ A SUN-compatible processor/memory board.
e A Geometry Engine board (10 Geometry Engines),
¢ A Raster Generation Subsystem.

* A Raster Update Subsystem,

‘ The IRIS allows the user program to gencrate display programs that provide for real-time motion of 2D
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and 3D environments, multi-window displays and color lookup table manipulation. To provide for motion
simulation, the system is dynamically configurable to provide either double or single-buffer images. The
system has been in operation since August, 1982, and procedures are underway to-replicate copies of the
system for future rescarch at various Stanford Laboratories.

Staff: K. Akeley, J. Clark, M. Grossman, C. Rhodes

3 Signal Processing Algorithms and Architectures

3.1 Simulation of Musical Instrements

transistors, and was designed by writing a SAIL program to generate its layout. Internally, it has a 12-bit
arithmetic unit that adds, subtracts, increments, decrements, and single-bit shifts; it has a 16 by 15-bit shift
register array and a 7 by 21-bit microcode array for controlling the data path. Although primarily designed to
synthesize plucked string sounds, the chip can also produce snare-drum, clarinet, and bassoon timbres. It is
controlled by an 8-bit port and internally decodes the command sequences sent to it by a microprocessor.
The chip requires 4K of external RAM in order to perform its functions, and it addresses this RAM directly.
Support for this project was primarily by the Hertz Foundation; ARPA support has been limited to

computation facilities and a small amount of personnel support.

Staffr K. Karplus, A, Strong

4 Testing

4.1 Process Control Test Structures

Work continues on the development of a variety of test structures for use in providing feedback to the
wafer fabrication activities at Stanford. The development of these test structurcs has paralleled the re-
cstablishment of the wafer fabrication activities as well as the tighter process control requirements imposed by

the development of a 2 um CMOS.

4.1.1 Defect Density Test Structures

A set of test structures has been developed which allows the extraction of defect densitics associated with
step-coverage, contact opening, and shorts which may be encountered at various points in the fabrication

‘ sequence. Although meander patterns, contact strings, ctc. provide a means of gencrating go/no-go statistics
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of thesc failures for a large coverage area, they provide little data as to where the defect actually occurs or
even if a test failed because of one or many defects. The advantage of these types of tests, however, is the fact
that they cover many sample sites and a large silicon area with a single measurement. The test structures that
we are developing attempt to provide a greater degree of localization to better pinpoint the number and
location of defects without totally sacrificing the ability to sample numbers of sample sites. These devices
provide a means of addressing the test stucture, if desired, to help localize either the position or number of
defects. The addressing circuitry allows a number of short test sections to be abutted together in a serial
fashion to provide go/no-go testing over the full array. If the array fails, the short sections can be addressed
either individually or in clusters using a binary search to progressively climinate fault-free sections. The
addressing circuitry is, of course, provided with a self-test mode to insure that we do not misinterpret
peripheral failures as being due to the cell array. Initial designs have divided the array into only 16 sections to
limit the number of pins required for address electronics so that we may maintain full compatability with the
NBS 2 by 10 probe array.

4.1.2 2 Micron CMOS Test Structures

A full set of test devices has becn developed to characterize the 2 pm CMOS process. These test structures
attempt to study the performance of the n- and p-channcl devices (both individually and taken together) as
well as a number of the important parasitic effects which are increasingly important as the feature size

decreases.

Even though CMOS is largely a ratioless technology (although it will not perform optimally with grossly
mismatched Z/L ratios), we wish to examine inverter performance to pick the optimum size for both the n-
channcl and the p-channel devices. At larger feature sizes (~ 4 pm and greater), the p-channel device is often
fabricated with a larger Z./L ratio than the n-chanmnel devicu to offset the fact the clectron mobility is greater
than hole mobility at comparable doping levels. At a two micron feature size, this difference is not as large
because (a) the n-chanael device is more severcly dominated by velocity saturation effects than the p-channel
device and (b) for cquivalent drawn gate lengths, the p-channel device will usually have a shorter effective

channel length because of increased lateral penetration of the source/drain regions.

Latch-up is the parasitic device phenomenon in CMOS which deserves the closest scrutiny and good test
structures are csscntial to the characterization of the latch-resistance of any CMOS techinvlogy. Because the
opcrating voltages in small geometry integrated circuits have not been reduced, hot carriers are much more
likcly to initiate latch-up in CMOS. For these reasons, our test structures include a variety of devices which

will be used to study the latch-up behaviour and hot carrier effects in 2 um CMOS technology
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4.1.3 Measurement Hardware

Our parametric measurement capabilities have been extensively modified during recent months. A HP
4145 Scmiconductor Measurement System and a HP 6942 matrix switch have been added to our
process/device characterization system. A HP 9845B controls these instruments as well as a Rucker and Kolls
1032 wafer prober and allows independent specification of the wafer stepping pattern, the matrix connections
to the probe card, and the actual test to be performed. A preliminary investigation indicates that this software
will be readily compatible with a HP9826/36, should the need arise. We now have improved software which
drives the R & K 1032, so that our probing speed has been roughly doubled in recent months.

Staff: T. Walker, L. Gerzberg, W. Yarbrough

Relaied Efforts: M. Buehler (JPL), L. Linholm (NBS), V. Tyree (MOSIS), D. Trotter (Miss. St.)

4.2 The ICTEST System

The ICTEST system is a unified system for functional simulation and testing. The test is written in

ICTEST, a supersct of C extended to include testing primitives, data formatting, and mechanisms for

specifying parallelism and pipelining. The test may then be targeted to run against a simulator (ESIM or

. TSIM) or a tester (MINIMAL, MEDIUM, or TEK S$-3260). The MEDIUM tester is the testing workhorse;
the TEK tester is intended primarily for performance measurement and functional testing at speed.

ICTEST itself has remained relatively stable over this period. We continue to use it to test our designs,
including the MIPS test chips. Support for the clocking discipline is now substantially debugged, although we
need to rethink our approach to qualified clocks and decide how they might be supported on the TEK (if that
is indeed possible).

We are reducing the MEDIUM tester to a chip set. It will connect to a standard DEC DMA interface, and
we shall distribute it to the community when it becomes available. The chip set that we have designed
comprises 2 chip types, and a 64 pin tester will require a total of 3 chips. The tester control and pin electronic
chips have both been designed and submitted for fabrication.  Additionally, we have designed test chips for
some new circuits that we need, including pads capable of driving 30mA loads. We have received the pin

electronics chip and the pad test chip and partially tested them. They both seem to work correctly.
Staff: D. Boyle, D. Marple, R. Mathews, J. Newkirk, 1. Watson

Related Work: FIF1 Project (CalTech)
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References: [Mathews 82], {Watson 82]

4.3 Clocking Discipline

We have developed a 2-phase clocking notation and an associated clocking discipline. The objective is to
provide appropriate formal concepts for thinking about clocking in 2-phase systems, and to dclincate a circuit
syntax guaranteeing consistent clocking. The clocking discipline can also be co-opted to guarantee other
forms of correctness, e.g., freedom from charge sharing. The auditing tool clockck checks circuits extracted
by the ESIM extractor for conformance to the discipline.

We have finished gleaning information from the Winter 82 testing class. Of 8 chips fabricated and tested,
3 designs had fatal clocking errors, and 2 had errors that could hurt performance. One of the three fatal cases
was of the most interesting sort: a design that passcd extensive simulation completely, but failed the clocking

check and did not, in fact, work when fabicated.
Staff: R. Mathews, J. Newkirk, D. Noice
Related Efforts: Glasser's work (MIT)

References: [Noice §2]

4.4 Practical Testing

We have tested 30 more copies of a 10,000-transistor serial memory based on a 3-transistor RAM cetl. The
memory was originally intended as a step toward a serial signal processing system, but has actually proved to

be test of our testing system and our understanding of the technology.

Of the 30 new parts from run M1DV, 40% are defect-free. Sixteen percent show anomalously low (less
than 100-microsecond) storage times of the sort we reported previously. The remainder have failures that
may be cxplained in terms of fabrication defects, with the exception of 2 chips that have the mysterious
property that while every bit in the memory planc scems to be functioning correctly, when we apply crror

correction to this perfect data, errors result!

As a result of our frustration with short storage times, we have designed and tested a canary circuit that
monitors storage times dircctly. The storage-time oscillator is a 3-stage ring oscillator, one stage of which is a

storage node that is charged and allowed to relax toward ground.

We have tested 2 chips so far, one with very short (1 microsccond) storage times. The storage oscillator
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successfully indicates that the short-storage time chip is defective and that its companion is acceptable. Using
optical injection to vary storage times over a large range, we have found that the storage oscillator on each
chip predicts the storage time very preciscly. The design seems to be insensitive to power supply variations,
but we will need to test more chips before we are completely confident.

As a simple experiment in performance measurement, we have designed and tested an instrumented family
of 7 PLLAs with different loading characteristics. We have measured the performance of each path through
each chip and computed regression lines to fit the observed data with delays predicted by = models. The
observed fits are very good, with correlation cocfficients around .8 and derived +'s ranging from .25 to .57
nanoseconds. However, the intercepts of the regression line are non-zero, indicating systematic measurement

errors specific to each member of the family, We are currently trying to chase these errors to ground.
Staff: G. Eckert, R. Mathews, J. Newkirk, T. Saxe, L. Shwetz, I. Watson

References: [Saxe 82]

5 Theoretical Investigations

5.1 Connected Components Algorithms

Finding the connected components of a graph, given its adjacency matrix, is a problem that has received
much attention recently, but the best way to implement the algorithm in VLSI is not known, Using the ar
measure, it is possible to solve the problem in n?* ¢ for an n node graph if one uscs the mesh-of-trees, a layout
that requires a great deal of area. Lipton and Valdes considered layouts that used area proportional to the
number of nodes, and came up with an °* € algorithm that is, unfortunately, not when-oblivious; the time at
which inputs are required depends on the data, A, Sicgel has rccently invented an algorithm that runs in the
same time as the Lipton-Valdes algorithm, is when-oblivious, and uses only #n pads. The area is on the order
of n*/2, so its figure of merit is AT =n**, which is better than any known r-pad algorithm. The material

has not yct been writtcn‘down by the author, but a sketch appears in [Ullman 82b).

Staff: A. Siegel, J. Ullman

5.2 Modular Model of Event-based Concurrent Systems

The formal model we have been developing has two major components: a structural algebra for describing
module interconncction structurcs, and a behavioral semantics that defines the function computed by a

network of modules. Most of our work in the last six months has concentrated on the behavioral semantics.
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As described in a previous report, the behavioral semantics associates with each module and network of

modules:

e a functional mapping between partially ordered events at input and output ports,
o a domain constraint, specifying that certain output cvents must precede certain input events, and

e a functional constraint, specifying that certain input cvents must precede certain output events,

The domain constraint is esscntially a statement of the conditions under which the module can be expected to
work correctly. For example, it might require that no new input events arrive until after all outputs for the
current input valucs have been produced. [f the domain constraint is violated, the behavior becomes
unpredicatable. The functional constraint, on the other hand, contains information about when a module will
produce new output events. Thus the domain constraint tells what the module requires of its environment,

and the functional constraint tells what it guarantees.

Our recent work has been particularly concerned with the problems of module substitution and the
semantics of non-deterministic systems. The module substitution issue arises because we often wish to
substitute one module for another in a network and need to know when this can be done without affecting the
properties of the network. A simple criterion for such substitution is semantic equivalence. If two modules
have the same functional mapping, domain constraint, and functional constraint, then one may replace the

other without any change in the network’s behavior.

In some cases, however, we need a more flexible criterion. We would like to be able to make a substitution
so long as it allows the nctwork to continue working correctly and produce the same output. This may be
possible cven with modules that are not identical. For example, suppose we have a system containing a
module that can perform correctly as long as it is asked to buffer no more than three input clements at a time.
(This would be expressed in the domain constraint.) If we rcplace this module with one that is identical
except for the fact that it can buffer more items, then the new network should continue to work correctly. In
gencral, we can always replace a module by one with a weaker domain constraint. If the environment of the
original module guarantced that the stronger domain constraint was satisficd, then the weaker onc will
nccessarily be satisfied, and the composed system will continue to perform correctly. Likewise, we can always
substitute a module with a stronger functional constraint, because if the original module operated in a way
that satisficd the domain constraints of other parts of the nctwork, then the (more constrained) new module
must do so too. Thus we can perform such a substitution if the new module has an identical functional
mapping, weaker (or identical) domain consiraints, and stronger (or identical) functional constraints. The
new network may not be equivalent to the old. but it will operate correctly in any environment where the old
onc docs. ‘This sort of substitution ariscs very naturally when the original system is viewed as a specification

and the substitution represents an implementation of the specification.
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The second problem we have considered is extending the semantics to non-deterministic systems. Non-
determinism is a property of many concurrent systems. 1t may arise cven in networks where all the primitive
modules are deterministic; this is because the relative timing of events at different modules is unpredictable,
and different timings may causc the system to produce different outputs. A non-deterministic module can be
described by altering the functional mapping to give, for each input, a set of possible outputs. There are
several technical problems that must be resolved in this sort of definition. The most significant is being able
to guarantee that loop-feedback (the operation that sends some of a network’s output to its own input ports) is
always well-defined. By modifying the approach of Piotkin and Smyth, which deals with non-determinism in
statc-oriented rather than cvent-oriented models, we have been able to solve these problems and develop a

mathematically sound semantics for non-deterministic nctworks,

Staff: S. Cwicki and N. Yamanouchi

5.3 Detect Tolerance in Array Architectures

We have developed a new body of theory treating the effect that defects have on yield of array
architectures. The theory addresscs such issues as whether it is possible to find chains or arrays of working
elements embedded in a large array and what reconfiguration capabilities must be available for the yield of

the reconfiguration process to be non-zero.

For the problem of finding a connected chain of working elements in a square array, we have developed a
new algorithm that requires time linear in the number of elements to be chained. We have also made
progress on the problem of finding an array of working clements embedded within a larger array by
tightening the bounds determining when such reconfiguration is possible. We are beginning some new work

investigating the effects of defects in the interconnect itself.
Staff: A. El Gamal, I. Greene

References: [GreeneEl Gamal 82]

5.4 Wiring Area for Gate Arrays

By applying statistical modeling techniques, we have devcloped a body of theory that predicts how to
rcalize a given function in a gate array with smallest overall die size. The central result is that it is preferable
to have a smaller gate array with a larger number of tracks in between blocks, thereby permitting higher
overall usc of the array clements, rather than sparscly using a larger array. Thesc theoretical results arc borne

out by a large body of empirical data collected by IBM,
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Staff A. El Gamal

References: [EL. Gamal 82]

6 The SUN Workstation: File System Development

The SUN represents a radical departure from the customary workstation design in that it does not have a
local disk. A typical SUN workstation at Stanford has 256K bytes of memory, a frame buffer with some
additional memory to hold the raster image, and a high-performance Ethernet link. In order to use the SUN
as a workstation for VLSI design or other applications, it must be possible to read and write file storage from
software resident in the SUN.

Our initial approach, which permits us to run simple software on the SUN, was to implement a page-at-a-
time file server called a Leaf Server, which ran on a supporting computer (usually a Vax) and provided disk
page access in response to request packets. This scrver and its development were reported in last year's
progress report, and we have done little work to it since. It is worth mentioning that the Unix-based Leaf
Server that we wrote last year was made available to other Arpa-supported users of Xerox 1100 Lisp
Workstations, and (after suitable modifications at ISI to make it compatible with the Xerox equipment) it
provides a valuable disk support facility to AI programmers using the 1100's.

Our experience with the Leaf Server approach to Remote File Access demonstrated conclusively that a
single-host file server was not an adequate level of file support for a network machine participating in a
distributed system. We experimented for a few months with changes that could be made to the Unix file
system or to the behavior of the Unix Leaf Servers that would make a more reasonable distributed file system
available to SUN users. We abandoned this approach for three reasons:

o The Unix file system does not map neatly to a distributed environment. At the design level, it
assumcs that there is at most one copy of any file, and that the entire file system is trec-structured.
It is difficult to modify the Unix kernel to think that parts of its file systems are on other machines,
though at the 1981 SIGOPS conference some Bell Labs rescarchers reported having accomplished
it (with a scvere degradation in performance.) At the implementation level, its locking
mechanisms are unreliable and the fixed 170 table sizes in the kernel provide unreasonable fixed
bounds on the total number of files that can be accessed simultancously on a given server host.
We thought that we could get by with a combination of a few kludged Unix file systems for the
first generation of SUN software, but the problems overwhelmed us.

» Lecaf-Server aceess to files on a time-shared Unix system was a sccond class citizen. We frequently
found the need to log a job on to the host Unix, probe around the file system, then log off and
resume a stopped SUN job that was having file problems. This problem could be bandaged by
providing a sct of file utility programs rcsident on the SUN, but the essence of the problem is that
a Unix file system is not very suitable for a non-Unix-like operating system; we do not intend to
run Unix on our SUNs,
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o Even with just 4 server hosts available (3 Unix and one Tenex), the amount of context that needed
to be maintained in a user’s head was overwhelming. The lack of automatic location, migration, or
replication facilities madc it particularly difficult to find files whose precise location was not
known.,

We therefore, reluctantly, concluded that we were going to have to design and implement our own file
system to our own specifications. This file system would be network-wide, provide a uniform set of access

mcchanisms and management tools, and be implemented on a varicty of file computers.

We have scttled on a multi-level design based around a central archival file system and distributed cached
copics. We are implementing the design "from the inside out”, starting with the reliable archival part and
working towards the fast cache servers; the reasoning behind that decision being that it is better to have a slow
reliable file system than a fast unrcliable file system during the development phase, We intend to present a
paper on this system at the 1983 SIGOPS conference, whose paper submittal deadline is in January, and we
intend to have the archival server working and the migration protocols designed by that time. The initial
implementation is taking place on our time-shared VAX, but we hope to move to a dedicated machine with a

larger disk as soon as it becomes available.
Staff: J. Mogul, B, Reid

References: [Baskett 82]

6.1 Computer support for a Fast Turnaround Laboratory

We have completed the planning and exploratory stages of a project to provide extensive automation and
computer support for the Fast Turnaround Laboratory. This ambitious interdisciplinary project (involving
researchers from Computer Systems, Integrated Circuits, and Solid State laboratories) will provide control,

documentation, training, portability, repeatability, and efficiency in the area of IC fabrication processes.

As a result of this exploration, we have isolated the following goals for this project:

o Automatic control of the IC fabrication processing cquipment.

o Integration of fabrication control with simulation control, to run simulation and fabrication in
parallel.

e A transportable, repeatable means for recording a fabrication process.
o The ability to rcpeat an arbitrary process on demand, for demand production of parts.

¢ The ability to manage and schedule a single IC fabrication line for multiple purposes.
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o Computer aids for training and documentation.

o General data processing and database support for analytic workin the Laboratories.

We recognize that particular technical achicvements will contribute to the realization of several of these
goals. The most important of these is the development of a language for the representation of fabrication
processes. When this language exists, it can be used as input to the control system, as input to the simulation
system, as the contents of an archive for demand production of parts, and as a basis for training and
documentation aids. Furthermore, the nature of this language will color most of the other work.

We have therefore spent several months on the preliminary design of such a language, our l.anguage for
Specifying Manufacturing Processes, or LSMP. (We intend to change its name before its specification is
published, but we are for the moment calling it LSMP internaily). This language resembles Ada semantically,
but contains built-in type support for non-numecric types pertaining to manufacturing, and contains extension
and package mechanisms suitable for the description of typed objects whose physical existence is outside the
controlling computer, ¢.g. furnaces. We quickly found that two languages were necessary, onc to describe the
manufacturing process and another to describe the fabrication line itself. This second language corresponds
very much to the microcode found on conventional computers, and it is uscd to implement a somewhat
abstract instruction set, into which the LSMP is compiled. A compiled L.SMP program can operate an
automated fabrication line with the appropriate microcode, or it can operate a simulation system {one
component of which would be programs like SUPILEM) with a different set of microcode. Other microcode
would be written to permit experimentation and testing of new processes before actually turning them loose

on the fabrication equipment.

Only by implementing all picces of this system and actually using it to manufacture parts can we satisfy
ourselves that it is complete; we would therefore want to do an automating implementation even if that were

not one of the goals of the project.

Having completed the first level of implementation, we intend to write software that amounts to a
distributed time-shared operating system for the fabrication line; this will permit multiple independent
fabrication processes, or laboratory experimentations, to be run on the same fabrication line simultancously
just as a time-shared computer is now capable of running independent programs simultancously. This

operating system will also take responsibility for the long-term scheduling and priority realization.

We consider that a system like this will be a superb testbed for explorations in knowledge-based systems for
training and diagnosis, and for applications of interactive graphics, computer aided instruction, and reliable

models of computation. We therefore hope to attract talented graduate students from various arcas related to
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computer scicnce, in addition to the core of people knowlcdgeable in IC fabrication, to this project. Currently
Prof. Brian Reid is spending 90% of his rescarch time on this project, and one graduate student, Harold
Ossher, is working on it full time. Several more graduate students are eager to join as soon as funding

becomes available to them.

7 Fast Turn-Around Laboratory

Activities if the Fast Turn-Around Laboratory have concentrated on the characterization of a significant
amount of fabrication, mask making, and testing cquipment followed by the subsequent incorporation of
these items into the primary NMOS and CMOS processes. The following subsections of this report will detail
the performance of many of these picces of equipment and indicate how they have enabled us to increase the
quality of our NMOS/CMOS wafer production and the quality of our device research.

7.1 Wafer Fabrication

During this period upgrading the processing lab has continued, in order to meet the project goals of
establishing standard 2 micron CMOS and NMOS processes. Much of this effort was directed at bringing on-
line and characterizing the equipment ordered during the previous reporting period. This equipment includes
three low pressure chemical vapor deposition (LPCVD) systems, two plasma dry ctchers, and a photoresist
processing system. In addition, a 1:1 projection alignment system capable of 1.25 micron linewidths was
installed and is being characterized. Finally a sputtering system and linewidth mecasurcment system have

been ordered.

7.1.1 Low-Pressure Chemical Vapor Deposition

The older muiti-purpose atmospheric Epi/CVD sysiem has been replaced by three (poly, nitride and
oxide) dedicated LPCVD sytems. Low pressure deposition offers significant improvements over atmospheric
deposition as following:

1. Improved thickness uniformity (2% vs. 15%) due to the 10} improvement in the gaseous diffusion
coefficients.

2. Fewer particle gencrated defects due to vertical wafer positioning and the "hot™ wall deposition
on the tube in the LPCVD system, versus horizontal positioning and “cold” wall deposition in the
atmospheric system.

Nitride CVD is essential to the local oxidation isolation process used for NMOS and CMOS. Use of the
LPCVD nitride systemn is now standard in our lab, and is capable of depositing the required 800 Angstrom
film to a uniformity of 2%. The typical deposition rate is 36 Angstrom/min. Thc gas flows are 20 SCCM of
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dichlorosilane and of 60 SCCM of ammonia. The furnace temperature is 790 degrees Celsius and the

deposition pressure is 500 mT.

Doped polysilicon is used as the g=te material and as a conductor in both NMOS and CMOS. The change
over to LPCVD not only improved thickness uniformity and particle control, but also reduces the grain size
because of the lower deposition temperature (620 degrees C for LPCVD vs, 900 degrees C for APCVD). The
smaller grain size is important since it reduces grain boundary rclated oxide defects, and reduces poly edge
roughness. The poly deposition is also done at a pressure of 500 mT and with a silane flow of 30 SCCM. The

deposition rate is 90 Angstrom/min.

The last of the new LPCVD systems which is opcrational is the low temperature oxide (LTO) system. This
phosphorus-doped oxide deposited at 4507C is intended to replace the atmosphere-depaosited vapox layer
which is reflowed to improve step coverage. Initial undoped LTO films show cxcellent uniformly (roughly
1%) and conformal step coverage. The deposition pressure is 400 mT and the flows are 60 SCCM of silane
and 95 SCCM of oxygen. Phosphorus doping during deposition is now being characterized.

7.1.2 Plasma Etching

In order to achieve line widths of three microns and less, wet ctching must be replaced with dry etching
techniques. For poly and nitride etching, a Drytek RIE 100 etcher has been purchased. This eicher,which is
in routine operation, operates in the plasma ctch mode. It is fully automated to climinate handling-induced
defects and to give better process control. A key feature is its use of a interferametric laser end point detection
system. For poly ctching, a controlled slope arocess has been achicved which gives a 70 degree wall slope
with a critical dimension loss of only 0.1 micron per ¢dge. Controtled slape, as opposed to purc 90 anisotropic
ctching, is desirable for step coverage needs. The present process uses a mixture of CZCIF5 and SF, both at
flows of 50 SCCM. The pressure is controlled at 150 mT and the RF power dcensity is at 0.3 watts per cm?.
For this process, the etch rate is 2000 Angstrom/min, and the selectivity of poly to both the resist and the

underlying oxide is 20:1.

For the less critical etehing of silicon nitride films, an isotropic process is used. This process uses a mixture
of CF, and 0, with flows of 90 and 10 SCCM, repscctively, The pressure is again sct at 150 mT and the RF

power is again 0.3 watts per cm? The etch rate is 160 Angstrom/min with sclectivity to oxide of 4 to 1.

For the etching of SiOz, Branson/IPC has given us one of their Sigma 80 etchers. This unit is an
automated single-wafer-at-a-time machine, The SiO2 process uses a mixture of C2F6. CHF3 and He at
respective flows of 300, 300, and 3000 SCCM. The pressure used is 10 Torr and the power density is 5 watt/

cm,. The cch rate on thermal oxide is 5000 Angstrom/min and the selective to both resist and silicon is
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roughly 7:1. The resulting oxide wall slope is currently 75 degrees. The process is being modified to improve

sclectivity, uniformity, and wall slope.

7.1.3 Photolithography

An automated photorcsist resist processor has been brought on line. This machine offers full cassette
operation with microsprocessor control of all functions and will significantly reduce resist related defects.
Functions include priming, resist coating, "puddle” development, and microwave baking. The processor is in
standard use except for the microwave bake feature, which will replace the usc of the resist bake oven when

characterized.

An Ultratech 1:1 projection stepper has recently been installed and is being characterized. This machine
offers significant area utilization improvements over our Canon 4:1 manual stepper, which is limited to a wtal
exposed area of only 3 cm by 3 ecm. The Ultratech is a fully automated state-of-the-art optical alignment
system which has auto focus, alignment, and load. It has a working resolution of 1.25 microns, with an
alignment accuracy of 0.14 microns. The pellicle protected reticle has four selectable fields which offer a
maximum unique silicon area of 6 cm? An advantage of this stepper over the popular 10:1 systems is that it

uses two wavelengths (405 and 436 nm) and thus is less susceptable to standing wave problems.

An optical linewidth measurement system has been ordered. This auto focussing unit will be used to

obtain tighter control of linewidths during processing,

These pieces of fabrication equipment have been used in the fabrication of both NMOS and CMOS device

wafers. The performance of the CMOS devices will be discussed in the Device Rescarch subscction.

7.2 Electron Beam Lithography

The principal activity of the E-beam lithography group involved the installation, characterization, and,
finaily, the on-sitc acceptance of the Perkin-Elmer/ETEC MEBES machine. The on-site acceptance tests
included extensive testing of the registration (alignment) accuracy of the MEBES machine in anticipation of
its usc as a direct-writc lithography tool, During the pcriod when the E-beam machine was undergoing
acceptance tests, we were characterizing the resist developing and chrome ctching systems in our lab. The
first use of the ability to develop and etch chrome plates was to produce the 2 pum CMOS test plates for Jim
Pfiester. These plates were actually written at P-E/ETEC, but developed and ctched at Stanford, before our

machinc had passed on-site acceptance,

At present, we arc in the process of making masks for the Ultratech 900 projection lithography system. The
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Ultrateeh is a L1 wafer step per whose mask requirements are somewhat different from that of a Perkin-Elmer
1407240, so we ave at present carcfully formatting these plates manually rather than using the MOSIS service.
It does appear, however, that we will be able to automatically place the desired dice, alignment marks, and
scribe lanes. 'This first mask set will include Jim Clark’s Geometry Engine, several of John Hennessy’s MIPS
test vehicles, and the two chips designed by Newkirk/Mathews/Watson that comprise a medium tester.

In addition to working with the MEBES machine, we have been developing a tri-level resist technology for
usc in direct-write applications. The principal nced for a multi-layer dircct-write technology is to provide a
thick, chemically resistant "working'" layer of resist on the wafer and yet maintain a thin, high resolution layer

of resist for the actual clectron patterning.

In our tri-level, the underlying layer of resist is 1.2 um of AZ-1470 which has been baked at 200 degrees
Celeius to remove any photosensitivity, The AZ-1470 has very good chemical resistance, planarizes the wafer
surface, and reduces sccondary clectron backscatter (compared to a silicon substrate) which can be a source of
image degradation, The sccond layer is a thin (500-800 Angstrom) layer of poly-Si which will ultimately be
used as the intermediate masking layer in the process of transferring the pattern from the PBS electron resist
to the underlying AZ 1470. Wc wish to keep this layer thin and of low atomic mass to minimize secondary
clecrron image degradation. We have used both evaporation and plasma-enhanced chemical vapor deposition
to deposit this layer, Researchers who are exploring tri-level resist for use in optical lithography favor the use
of Si0, as the intermediate material because of its low index of refraction. For electron exposure, however,
the slight conductivity of poly-8i is preferable to reduce charging effects. The top layer is 0.4 pm of PBS
clectron resist which is coated, exposed, and developed as if on a chrome blank. This pattern is then
transferred to the poly-Si using plasma etching (an anisotropic CF, + 4% O, etch is adequate because the
poly-Si is so thin) which in tumn serves as a mask for O, reactive ion ctching. Using a partial pressure of 6 um

Hg of O,, we have achieved ncarly vertical sidewalls in featurcs 0.5 pm wide separated by 0.5 pm.

We have been investigating two reactive ion etching systems for routine use in this application: one is

manufacturered by Materials Research Corporation and the other is manufacturered by Drytek.

7.3 Device Research

Many ditferent aspects of our device rescarch program have an impact on the development of a 2um
CMQOS technology. Jim Pfiester has designed a mask sct containing a wide variety of CMOS test structures to
aid him in the development of this process. The mask sct was generated without the usc of bloats or shrinks
during mask making to provide an accurate measure of what bloats/shrinks will be required to produce the

“"drawn" dimension in silicon. This is an n-well process which has a surface concentration that does not
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require a channei stop for the p-channel devices. The n-channel drain/source junction depths are only 0.3
pm deep and the p-channel drain/source region are about 0.55 pm deep. The measured electrical channel
length for the n-channel and p-channel devices was 1.6 and 1.1 pm for a drawn dimension of 2.0 pm,
indicating that our poly-Si plasma etching is providing an anisotropic ctch profile because most of the
difference between the effective and drawn channel lenghts is due to the lateral diffuaion from the drain and

solrce regions.

Electrically, the n-channet devices look very good in terms of leakage current, threshold voltage. Previous
runs had indicated that drain-induced barrier lowering (DIBL) is the most stringent test of these devices.
These devices cxhibit very good drain-induced barrier lowering properties. The threshold voltage of the p-
channel devices are as we expect them to be. Unfortunately, these first devices had a parasitic leakage current
from drain to substrate along the surfacc of the n-well which is superimposed on the actual drain/source
current. The cause of this lcakage is under close scrutiny and two scts of additional CMOS wafers are nearing

the end of the fabrication sequence.

In order to help in the investigation of latch-up in short channel CMOS structures, we have initiated a
program to investigate the properties of devices as a function of temperature. From a device physics
standpoint, it is extremely desirable to have such a capability in order to establish the activation energy of the
phenomena under investigation. We are at present constructing a test fixture which will aliow us to scan the

tempcrature of a packaged device from 77 degess Kelvin to 100 degrees Celsius.

Staff: J. Shott, J. McVittie, E. Wood, K Saraswat, R.Castellano, F.Pease, D.Dameron, C.-C.Fu,
P. Jerabek, J. Plummer, J. Pficster, T. Nguyen, L. Lewyn, J. Marshall, A. Henning, D, Gardner

8 Other Projects

8.1 Polygon Package and Design-Rule Checker

For some time now, we have made available a high-quality design-rule checker based on our polygon
package. [t derives circuit connectivity information to prevent reporting of false scparation errors between
clectrically connected components. This checker is used by our design classes and for our rescarch and has
been heavily tested by 80+ designers. We have recently added support for buried contacts in nMOS.

We have developed and tested an analogous checker for the JPL bulk CMOS rules. It has checked the
designs submitted by Stanford, MIT, and Lincoln Labs for the bulk CMOS run. We have distributed the
CMOS checker to JPL and MIT,
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Stafft D. Noice

8.2 Cell Library

The nMOS cell library is now being prepared for publication by Addison-Wesley as a companion to the
Mead and Conway text. Accordingly, we are cleaning up the documentation, correcting minor design-rule
violations, and thoroughly checking the cells. Some new cells will be included, such as LSSD PLA bufers.

We have designed and submitted bulk CMOS cells to form the basis of a CMOS cell library. The new cells
are pads, PLA designs, and counters.

Staff: R. Mathews, J. Newkirk, J. Shott, T. Walker

8.3 Modifications to MIT Circuit Extractor

We have integrated the MIT circuit extractor with our CLL/CIF processing software, resulting in an order-
of-magnitude improvement in extraction speed. Previously, the 10,000-transistor serial memory required
several hours to extract; extraction now requires approximately 10 minutes. We will distribute the extractor if
there is sufficient interest; however, prospective users should be aware that our CIF processing system is

restricted to Manhattan-only, rectangle-only designs.

Staff: J. Newkirk, T. Saxe, S. Taylor
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Abstract.  We are currently developing a sys.em, Palladio, which serves as a vehicle for
experimeniation with various integrated circuitl design methodologies and with knowledge-based expert
system design aids. This paper describes the basic design concepts underlying Palladio, the overall
architecture of Palladio and the current development slatus.

1. Introduction

The Palladio? system is a framework for experimentation with integrated circuit (IC)
design methodologies, expert system techniques, and symbolic circuit simulation
concepts. Pailadio serves as the focus for the Knowledge-based VLSI Project (KB-
VLSI project), a collaborative activity between the Heuristic Programming Project,
Stanford University and the VLSI System Design Area, Xerox Palo Alto Research
Center.

The KB-VLSI project is concerned with understanding the processes by which
artifacts, in particular, integrated circuits, are designed. The long-term goals of the
project are:

Identify and articulate the expert kndwledge used in integrated circuit design.
An objective here is to gain an understanding of the design process and to
develop cognitive models of the process,

Develop methods for representing and reasoning with design knowledge.
Such reasoning involves design constraints, goals, and tradeoffs.

Develop knowlege-based expert systems for assisting in the IC design, test and
debug cycle. The systems include aids for entering and recording IC design
specifications and aids for transforming abstract design specifications into
more detailed specifications,

1 The Stanford University component of this rescarch is funded by the Defense Advanced Research
Projects Agency under Contract MDA-903-80-c-007.

2 Andrea Palladio (1518-1580) was an Italian Renaissance architect of great reknown, He is perhaps
best known because he developed a methodology of proportion and formal architectural style that
has become known as classical architecture, In a sense, he was the first knowledge engineer of
design principles and his influential published works are still in print four hundred years after his
death,



Palladio is the primary research vchicle for the KB-VLSI project.
2. Palladio’s Model of the Design Process

An IC design process can be viewed as the creation of behavioral and structural
specifications of a circuit. This usually involves a sequence of transformations from
abstract specifications of the behavior and structure of the circuit to more detailed
implementation specifications. For example, the design of a combinational logic
circuit may involve first transforming a specification of the circuit in terms of
boolean equations which relate the inputs and outputs into a specification in terms of
logic gates and interconnection networks, and then transforming this latter
specification into a layout specification expressed in terms of “colored™ rectangles.

A useful metaphor for this transformation process is that design is search [7]. The
designer searches in a solution space of implementation specifications. Moves in this
space are design decisions. Each design decision involves considering alternative
implementations, testing the alternatives against the constraints and goals imposed by
the abstract specifications, and using tradeoffs to differentiate between "satisficing”
alternatives and to resolve conflicts between incompatible constraints and goals. The
design decision process is difficult because: (a) the solution space is large, (b) the
generation of alternative solutions is expensive, (¢) only partial information is
available, (d) it is not possible to predict all of the consequences of a decision.

2.1. Design Hierarchies

IC designers have, in part, coped with the difficulty of making design decisions by
exploiting hierarchies in the design process. One powerful hierarchical technique is
to decompose a device into semi-independent subdevices and to focus attention on
each subdevice individually. For example, a 4-bit register can be considered as four
1-bit registers and their interconnections. The focus on a subdevice reduces the size
of the solution space under consideration.

The device-subdevice hierarchy is only one way of partitioning the design process.
Design using description levels {abstract models of circuits) is a complementary way
to do it. Each description level provides languages for describing the behavior and
structure of a device which suppress particular details of physical implementations of
the device. The use of description levels reduces the complexity of the elements in a
solution space and makes the generation and comparision of alternatives less
expensive.

Description levels also permit a designer to partition concerns by concentrating on
subclasses of design decisions, For example, at an architectural level a designer can
work out certain storage and communication decisions before worrying about power
considerations. The derivation of useful design description levels requires significant
domain-specific knowledge ~ a sort of “enginecering of knowledge" {8].

We are currently experimenting with four description levels in the Palladio system:
Layout, Clocked Primitive Switches (CPS), Clocked Registers and Logic (CRL) and
Linked Module Abstraction (LMA). Collectively, these levels factor the concerns of a



digital designer [6].

The most widely used description level in integrated circuit design is the artwork or
layout level. This level describes integrated circuits in terms of “colored rectangles”

(representing material on a chip) that can be composed to build up large designs.
Associated with the colored rectangle terms of the Iayout level is a set of composition
rules, called layout design rules. The layout composition rules provide a simpie
shallow model of composition that is based on a deep mode! of electrical properties
and fabrication tolerances. If designers follow these rules, their designs are
guaranteced to have adequate physical spacing on a chip [3, 4]

The layout description level has several important properties which make it useful
for the synthesis of designs. First, primitive terms can be combined to form larger
terms and subsystems. Second, there are rules of composition that define the
allowed compositions of these terms. These rules apply both to composite objects
and primitive terms. Third, there is a well characterized set of bugs that are avoided
when the composition rules are obeyed. At the layout level, these bugs correspond
to the function and performance problems caused by incorrect physical spacing.

All of our proposed more: abstract description levels have properties analogous to
those of the layout level. The CPS level distinguishes between different uses for
logic and is concerned with the digital behavior of a system. Different uses of logic
include steering logic, clocking logic, and restoring logic. The composition rules at
this level prevent bugs of non-digital behavior caused by charge sharing and invalid
switching levels. The CRL level is concerned with the composition of combinational
and register logic. The composition rules at the CRL level preclude various bugs
related to clocking in a two-phase system. The LMA level is concerned with the
sequencing of computational events in a digital system. It descrioes the paths along
which data can flow, the sequential and parallel activation of computations, and the
distribution of registers. The composition rules at the LMA level preclude bugs such
as starting computations before the data are ready, and deadlock bugs that arise from
the improper use of shared modules.

2.2. Design Knowledge Bases

Much of the design of ICs is done by using parts of existing designs, possibly with
modification. This technique exploits the fact that there are common constructs used
in many circuits; for example, registers, NAND gates and input-output pads. The
use of previously designed (and debugged) components in a current. design is
analogous to the use of subroutine packages in software development.

In Palladio, knowledge about previously defined circuits is kept in community
knowledge bases. These knowledge bases can contain not only exisiting designs but
also collections of knowledge about the composition and the optimization of circuit
components. For example, at the CPS level we are developing a knowledge base
which includes a collection of prototype logic gates, a set of rules that define the
allowed composition of these gates and a set of optimization rules for reducing .
various costs of circuits composed of networks of gates.



The use of community knowledge bases in Palladio is supported by the LOOPS
system [1]. LOQPS is an object and data oriented programming system implemented
in the Interlisp [9] programming environment, LOOPS was created, in particular, to
support a design environment in which there are community knowledge bases that
people share, and to which they can add incremental updates.

2.3. Design Evolution

The design of a complex artifact such as an integrated circuit is an evolutionary
process that follows an iterative cycle: create a candidate design — test the candidate
design against current requirements — modify the design and/or requirements to
create a new candidate design. An IC design system should have facilities for
interactive simulation to provide a rapid feedback between proposed changes and
their exercise on test cases.

Within the Palladio framework, we have begun experiments with interactive, rule-
based symbolic circuit simulators, These simulators use symbolic reasoning on a
hierarchy of behavioral and structural specifications for a circuit in order to predict
the outputs of the circuit given a set of inputs. The simulators include a dynamic
display capability, ie., "animated simulation cartoons.” Our objective is to develop a
design environment based on simulators, interactive editors, and debugging tools
comparable in power and flexibility (and in concept) to, for example, the Interlisp
Programmer’s Assistant [10].

3. Palladio’s Architecture

A major purpose of the Palladio system is to provide a common starting point and a
framework for the research activities of the KB-VLSI project. As such, Palladio must
be sufficiently general so that it can be easily extended as our research continues. At
the same time, Palladio must admit sufficient specialization so that we can rapidly
experiment with particular design concepts, To achieve these goals we have used a
knowledge based architecture for Palladio.

The overall architecture of the Palladio system is shown in Figure 1.
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Figure 1. Palladio System Block Diagram

There are two classes of users of Palladio: knowledge engineers and circuit
designers. Knowledge engineers use the ktiowledge base editor to enter concepts and
rules of design that define Palladio’s design methodologies. This knowledge is kept
in community knowledge bases. Circuit designers interact with the design editor and
designer’s assistant to create circuit designs. The design editor enables a designer to
enter and modify circuit descriptions at various levels of description, The editor uses
the composition rules of each design methodology to assure that the design is “legal”
with respect to that methodology.

The designer’s assistant is an active element that can propose design decisions. The
two programs are integrated with a single graphics interface from which the user can
control the activity and participation of the designer's assistant. The design editor,
designer’s assistant, and knowledge base editor all communicate with the knowledge
base via the knowledge base management component of LOOPS.

4. Current Status

Most of the supporting framework for the Palladio system is currently in place. The
LOOPS programming system [1], has been fully implemented. "A high-level, object-

e Y




oriented graphics package has been developed for the Xerox Dolphin personal
computer, the development machine for the KB-VLSI project. This package,
HILGA [2], is interfaced with the LOOPS system, The GLISP language [S], has
been interfaced with LOOPS. GLISP provides LOOPS with optimized data and
procedure access.

Prototype cominunity knowledge bases for the CPS and LMA description levels are
substantially completed. The initial knowledge bases for the layout and CRL levels
are under development. A rule-based design editor for the CPS level is partially
implemented. ‘

A prototype "animated” simulator for the LMA level has been implemented. The
implementation of an interactive simulator for the CPS level has been started.

Research has been initiated on expert system design assistants to aid in transforming
abstract design specifications into more detailed specifications [11]. This work
includes research on the use of tradeoffs in the design process.

By the end of this year we plan to have énough of the Palladio system in place so
that it can be used to create designs of simple, "student - level™ integrated circuits.

5. Concluding Remarks

An important purpose for Palladio is as a vehicle for community building.-
Opportunities for developing systematic bodies of design knowledge will appear in
many parts of the VLSI design community. Although knowledge engineering
provides effective techniques for capturing and debuggmg this knowledge, these
techniques are not widely understood or practiced in the VLSI community. In
particular, there is a shortage of trained knowledge engineers and suitable computers
for this work. Because of the intellectual and computational hurdles, it is unlikely
that expert systems will be widely available in the community for several years. It is
our intention to keep this part of our research open and to invite experimentation
with our facilities and participation by other members of the VLSI design
community as opportunities arise.
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Abstract

SILT is an efficient, medium-level language to describe VLS| layout. Layout features are described in
terms of a coordinate system based on the concept of relative geometry. SILT provides hierarchical
cell description, a library format for parameterized cells with defaults for the parameters, constraint
checking (but not enforcement), and some name control. It is designed to be used with a graphical
interface, but can be used by itself.
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1. Introduction

1.1 SILT Overview

in many endeavors, especially VLS| design, what seems to be the last 10% of the work often takes
90% of the time. It is often not too difticult to lay out the Initial circuit, but "smali” modifications can
take an enormous amount of time. One of the main goals of the SILT VLS layout language is to make
such modifications easier. Another goal is to provide a convenient form for general library cells that
provides for some "stretch" in the cells. Finally, SILT's naming conventions are designed help the
user keep track of the names involved in a large hierarchical circuit.

It is easiest to describe SILT as & language by analogy with programming languages. CIF
corresponds to machine language, CLL (a Stanford language that is essentially CIF with symbolic
names instead of numbers, see [5]) corresponds to an absolute assembler, and SILT correspondsto a
relocatable assembler. SILT is not a "silicon compiler” in that it is descriptive rather than procedural.
Because of this, it is not too hard for the user to figure out exactly what geometry will be produced by
a given set of instructions. Geometry produced by SILT would bear roughiy the same relation to the
geometry produced by a true silicon compiler that machine code produced by a language assembler

. would to that produced by a full-blown compiler.

SILT has some features not present in CIF or CLL. The most important is probably the
parameterization ot symbols which can be extremely important for a library format. SILT's local
names and its method of exporting only certain names outside symbols help to control the size of the
name space. Finally, SILT provides some mechanism for constraint checking that is done

automatically when symbols are expanded.

SILT's syntax looks much like that of a block structured language such as ALGOL or PASCAL. A
SILT file is a series of symbol definitions followed by calls on those symbols. A symbol includes a
parameter list, some declarations (including, perhaps, definitions of other symbols), and a series of
symbol calls. The symbol calls can be on previously defined symbols or on primitive symbols, such as
rectangles, contact cuts, and butting contacts. The scoping rules for names are similar to those in
PASCAL, so symbols and variables declared within another symbol are local to it. The mechanism for
passing data to and from a symbol will be discussed in greater detail later. There are advantages and

disadvantages to this, which are described in 3.1.

. SILT can be used by itself to lay out circuits, but it is designed to be used with a graphical front end.




The language is designed to be an interchange form, however, so it in not tied to any particular
graphics editor,

It is possible to use SILT using input generated by other graphical editors. The only requirement is
that they be able to produce CIF output. In SILT, certain symbols can be cieclared to be external. A
symbol that is so declared can be used in much the same way as other SILT symbols. There are some
restrictions, however.

SILT is not a complicated language -- in most cases, the designer should be able to figure out
exactly what geometry will be generated by any particular fragment of code. It has no powerful built.
in primitives such as "insert 16:-bit ALU" or "route signal1<0:15> to signal2<16:31>", The "16-bit
ALU" may exist in a library, but the user will have to do the routing for the second example. There are
only a few features found in SILT that are not found in some 6ther language -- SILT primarily makes a
conveanient set of features available within a single language.

1.2 The Implementation

At present, two programs exist for the conversion of SILT to CIF and back again. Both are written
in PASCAL. The CIF to SILT converter should be quite portable, but the SILT to CIF program is based
on Hennessy's parser generator (see [2]), so porting the SILT program would also require porting the

parser generator as well.

The code is written to run under both TOPS-20 and UNIX. Some minor changes must be made in
the code to transfer it from one operating system to another. The source code is the TOPS-20
version, but there are instructions for the edits that must be performed to make the UNIX version at
the beginning of the file.

1.3 Using this Document

The easiest way to learn SILT (or any other programming language, for that matter) is by looking at
examples, A series of examples is provided in appendix 1. The exact syntax for SILT can be found in
appendix I, which includes pointers back into the document for discussions of the associated
semantics. Finally, there is a list of the SILT reserved words in appendix lll.
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1.4 Using SILT (oY~ M"’“’Q

SILT currently runs under TOPS.20 (Hedrick's PASCAL) and BERKELEY UNIX (BERKELEY
PASCAL). The procedure for using it is similar in both cases. In the TOPS.20 version, when the
program starts up, the user will be asked for the name of an input file and an output file. The input file
is the SILT source, and the output file will contain tha CIF generated. No default extensions are
assumed, so the whale file name must be typed in both cases. Any errors encountered are printed out
on the terminal. The general philosophy followed by SILT is that it attempts to recover from as many
errors as possible. Thus, when the input‘file contains errors, SILT Is not guaranteed to work and run-
time errors occasionally occur. The hope is that enough error diagnostics are generated so that the

user ¢an correct the errors and try again.

For the UNIX implementation, the standard input and output are used, and most of the etrors are
recorded in a special file called "errors". A few messages are sent to the terminal. As in the TOPS-20
version, the entire file names must be specified. The standard extensions that most people use are
".slt" for SILT files, and ".cif" for CIF files.

When the UNIX version is used on the VAX, SILT files can be used with the "C" preprocesscr. The
SILT assembler does not itself call on the preprocessor, but it ignores any lines beginning with the

character " # ", The main use of this is for the inclusion of files.

@
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A graphical front.end for this language can present the symbol on the screen together with the
relative points. In addition to the usual commands for adding, deleting, and moving rectangles, the
user can add, delete, and move the ralative points, When a relative point is moved, all associated
geometry is adjusted. The graphical editor must also Include commands to associate edges of
rectangles with relative points.

in fact, two graphical SILT-based editors have been written. The first was purely experimental,
called ALE (see [4)), and was used to experiment with various techniques to interract graphically with
SILT constructs. Later, based upon the ALE experiences, another editor, called YALE (see [1]) has
been implemented on the SUN workstations. YALE does not implement all of the features of SILT, but
does implement the more important ones. All of YALE's input and output is done in a subset of SILT.
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3. Names and Data Types

3.1 Names and Scoping

All user-defined names in SILT begin with a letter and are followed by any number of letters, digits,
or the underscore character ("." = ASCI| 1378). No case distinction is made, so "AbC5" and "abC8&"
represent the same nama. Users may not use any of the SILT reserved words, which are listed in
appendix il

SILT's scoping rules are similar to those in PASCAL, with one important exception. |f SILT's
symbols are thought ot as PASCAL procedures or functions, then the variables visible with a given
nesting of symbols would be the same ones visible within ‘the same nesting of PASCAL procedures.
The exception is SILT's export mechanism. This allows a symbol to make a certain set of internally

defined symbols visible outside it. This topic is fully discussed in section 3.5.

Future versions of SILT may not allow such complete freedom in nesting functions and in the sceope
of names. For efficiency, every time SILT expands a symbol, it keeps track of the parameters passed
to the symbol and to the CIF code produced. Every time the symbol is expanded, a check is made to
see if it has been expanded before with the same parameters. If so, no expansion is done, and a
pointer to the already expanded symbol is returned. If a symbol depends on variables not in the
parameter list, errors will occur. Future versions of SILT may not allow nesting of functions, and will
thus have only two kinds of variables -- local and global. Thus, it is not recommended that full

advantage be taken of SILT's nesting mechanism,

3.2 Variable Types

SILT deals with four basic kinds of variables: x- and y-relative points (described in the previous
chapter), scalar values and signals. These are declared as xvar, yvar, scalar, and signal, respectively.
Variables of type xvar, yvar and signal are simply stored as a single real number, but signals are more
complicated. A signalis a collection of triplets, where each triplet consists of an x- and y- coordinate

together with an optional process layer (imetal, diffusion, polysilicon, etc.).

Scalars are meant as a catch-all to include such things as iteration variables, pull-up ratios, and
power requirements. Scalars are not altered when a symbol is transformed (x-relative points are

changed to y-relative paoints when the symbol is rotated 90 degrees).



Signals are meant to be used to identify particular points of the guometry so that various
constraints can be checked. A user may, for example, insist that point "a" of signal "b" be
connected to point "¢" of signal "d" (see 5.12). Signals are transformed as a pair of relative points
when their symbol is transformed. Vectors of signals such as "addr<0:23>" can be declared, and one
can refer to the components of particular signals with expressions like "a_in.x" or "addr<O>.y". The
reason that a signal consists of possibly more than one triplet of values is that the same electrical
signal is often avzilable at different points within the symbol. When one asks to have one signal
connected to another, it does not matter to which of these poinis a connection is made. This is
especially useful for symbols that have a bus passing through them, and hence each signal on the
bus will be available at both ends of the symbol.

All the variables described above can be combined in the usual way with arithmetic operations and
constants. SILT makes no checks to ensure that the expressions formed make sense -- it will
cheerfully allow the user to multiply relative points or to subtract an x-relative point from a y-relative

point,

All numbers in SILT are stored internally as real values, and thus division does not round. SILT also
has the integer functions "div" and "mod". "x mod y" is evaluated as "float(round(x) mod
round(y))", and "div" is handled similarly. Foliowing are a few examples of valid SILT arithmetic

expressions:

abc + (power®*width)
(q mod r) - xyz / (7.3*((p+q) div r))

in addition to "+ ", ", "*" /", "div", and "mod", SILT includes an (experimental) function
"bitop" (standing for "bit operation"). It is a function of two integers (which are produced by
rounding as for "div" and "mod", above), and allows one to determine whether a given bit in the
binary expansion of a number is "1" or "0". "bitop(number, bitposition)" yields the numeric value 1

or 0. The least significant bit is number zero, so "bitop(5,0)" yields 1, "bitop(5,1)" is 0, and so on.

In a sense, SILT also deals with boolean values, although there is no way to save such a value in a
variable. Arbitrarily complicated boolean expressions like "a >= b AND ((NOTb>=7) OR (c+e {=
d))" can be formed and used in both conditional statements (see section 5.8) or constraints (see
section 4.5). At present, the comparitors ">" and "<{" are not available because of some restrictions

of the parser, but they can be implemented using "NOT" with "> =" and "¢(=".



3.3 Symbol Names

All the geometry in a circuit is defined in terms of symbols, the bodies of which are made up of
primitive calls and calls on other symbols, Symbols may be defined within other symbols, and
symbols so defined are "local" to their containing symbol. Locals within different symbols may hava

the same names.

The entire SILT file can be thought of as a distinguished symbol that is different from other symbols
in that it has no parameters and that it is automatically expanded once at (0, 0). The "file" in SILT is
to its symbols much as the "program" in PASCAL is to its procedures.

3.4 Instance Names

A single symbol can be instantiated many times, and any number of particular instantiations may be
named It is common to lay out one- or two-dimensional arrays of symbols, so SILT allows array-like
instance names. A symbol call is named if it is preceded by an instance name followed by "::". For

example, if "foo" has been declared as a symbol, then it might be instantiated in the following ways:
place foo() at ... (* no instance name here *)

a:: place foo() at ..
b{2]:: place foo() at ...
for i := 0 to 7 do

for j := 0 to 7 do
cfi.3]:: place foo() at ...

In arrays of instances, the indices are rounded to the nearest whole number(s). No instance names
(including arrays of instances) need tc be declared ahead of time. An array of instances must all
coirespond to the same symbol, although the symbol in question may be called with different

parameters in each instance.

3.5 Exports .

All variables defined within a symbol are local to the symbol, unless they are specifically exported
using an export declaration. Information exported from a symbol is visible only within the symbol that
called it. Thus only information that is in some sense important is visible outside a symbol. If symbol
"a" calls symbol "b" and symbol "b" calls symbol "c", then the exports of symbol "c" are not
automatically visible in the body of symbol "a" urless "b" also specifically exports them. The
example in Figure 3-0 below illustrates the code required to make "c"'s export visible inside symbol

"a" (as b_inst.c_export):
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Tha types of things that are exported often include some subset of the relative points, certain
connaction points (slgnals), power requiraments, and Infortation about the size of the cell. The size
ol the call is automatically exported even if the user does not specifically ask for it ("xmin", "xmax",
"ymin" and "ymax" are the values automatically exported). The example that follows illustrates the
meathod for nccessing exported names. If a symbol is placed without an instance name, its exports
ure not accessible,

Figure 3-1: Exporting values

symboY ¢();
scalar ¢_axport,
axport c_eiport;

symbho! b()

scalar c_export;

oxport c_export;
begin
c_inst:: place c¢() at (0, 0);
c_export ;= c_inst.c_export;
and;

symbol a()
begin
b_inst:: place b() at (0, 0);

and;

3.6 CIF Names

SILT also has a provision for passing certain names to the CIF file produced. These names can be

attached to a point and optionally to a layer. See section 5.9.
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4. Symbol Declaration

Every SILT symbol (including the entire SILT file itself) has a header, a series (possibly empty) of
declarations, and then a list of symbol commands. This chapter discusses the header and

declarations of a symbol definition.

SILT input is free-form in the spirit of PASCAL. Spaces, tabs, and carriage-returns can appear

anywhere except within an identifier or a reserved word.

Comments can be imbedded anywhere in a SILT file where a space could appear, and are made up
of arbitrary text, surrounded by "(*" and "*)". Comments may be nested, making it possible to

comment out arbitrary chunks of SILT code.

All symbols must be defined before they are used -- there is nothing that would correspond to a
PASCAL "forward" declaration. Instance names need not be declared ahead of time, but all other

variables must be.

4.1 Symbol Parameters

It is possible to pass any number of relative point values to a symbol via the parameter list. SILT
also allows the user to pass other values to a symbol, such as scalars representing power
requirements or puliup ratios. Each parameter should have a default value associated with it that is
usually chosen to produce a cell-of minimum size. See section 4.4. Since the minimum celi is usually
what is desired, parameter specification will be the exception rather than the rule. For this reason,
both key calls and positional calls are implemented in SILT. If the symbol foo has a header that looks
like:

symbol foo(xvar x0, x1, x2);

Then the following two forms are valid calls on the symbol:

place foo(x0=3, x2=15) at (0, 0);
place foo(3, 4, 18) at (0, 0);

In the first case, x1 will get the default value, whatever it is. In the second, x0, x1, and x2 would ba

assigned to 3, 4, and 18, respectively.
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4.2 Declaration of Variables

The symbol header is followed by an optional constant declaration and then a series of variable
declarations. Constants serve the same purpose as constants in PASCAL, and their values cannot

change after their initial declaration. A constant declaration might look something like:
constant a := 1; b := 6; c3po := 11.38;

Any variables that are to be local to the symbol are declared next as in the following example:

xvar x0, x1, x2;

yvar y0;

scalar powar, indx;

signal a, addr<0:23>, vdd, gnd;

The variable declarations may appear in any order.

4.3 Exports

Any variable declared within a symbol can be exported by including its name in an export
deciaration. In addition, variables from the parameter list can also be exported. (This last is not so
silly as it seems -- since various defaults may be taken, the user would otherwise have no easy way to
find out some of the relative point positions.) As was stated before, every symbol effectively includes

the following:

xvar xmin, xmax;
yvar ymin, ymax;
export xmin, xmax, ymin, ymax;

The general export declaration looks exactly like the example above. If a signal vector is exported,
only its name is necessary -- the size has already been declared. The following example illustrates all

the possibilities:

symbol foo(yvar y9);
xvar a, b;

signal ¢, d<0:5>, e;
export a, ¢, d, b, y9;

4.4 Defaults

A default declaration is made up of a list of assignment statements that are interpreted in a special
way. The left-hand-side {LHS) of an assignment must be a member of the formal parameter list, but
the right-hand-side (RHS) can be an arbitrary expression. The only constraint is that all variables in
the RHS must be known by the time the expression is evaluated. A typical set of default values (in this

case for Figure 3-0 above) will look something like this:
defaust x0 := 9; x1 := x0 + 6; x2 := x0 + 9, »3 := x1 + 17;




* gt C g 0,

The form above makes the relative relations among the points clear -- xQ is relative to the origin, x1 ig

relative to x0, and so on.

SILT expands a symbol's parameter list by going through the default declarations in order, and if
the LHS variable is unknown, then the RHS is evaluated and assigned to it. If the LHS is known, SILT
advances to the next assignment in the default list. If the symbol having the default declaration in the
fast paragraph were called with x0=8 and x2 =11, then the symbo! would be expanded with x0=8,
x1=14,x2=11, and x3=31.

4.5 Constraint Declarations

it is possible to declare within any symbol a set of constraints to be checked when the cell is
instantiated. A constraint is entered as two arbitrary expressions separated by "<=" (less-than-or-

equal), "> =", """ (not-equal) or " =", Various information about design rules, power requirements,
or anything ealse can be included. SILT makes no attempt to force the constraints to be satisfied -- it

simply warns the user of a possible error if a constraint violation occurs.

Al the boolean expressions in the constraint list are evaluated after the default list has been
processed. If errors are discovered, the user is warned, but the SILT assembly continues. SILT
makes no attempt to stretch or shrink geometry to force the constraints to be satisfied -- it merely

prints a warning if there is an error.

4.6 Symbol Definitions

After any combination of the above declarations, any number of local symbols may be declared,
The program fragment below gives the form of a complete symbol definition, where the "..." is

replaced by any number of symbol commands which will be discussed in chapter 5.

symbol foo(xvar x0, yvar y0, scalar bar);
constant constl := 7:
xvar x_loc;
signal sigc0:7>;
export x0, x_loc, sig:
default x0 := 5; y0 := 7;
scalar := x0 - y0 + 2; (* Jegal, but senseless *)
begin .

end;
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5. The Symbol Body

A variety of commands are available within the body of a SILT symbol. Each is discussed in detall
in the following sections.

5.1 Primitive Calls

At present, there are three types of primitive calls available in SILT. These include contact cuts,
hutting contacts, and boxes (rectangles). The calling sequence for each of the above types is similar
to the calling sequence for general symbols, but there are a few restrictions. In most of the examples
in this document, the word "place" has been put in front of each call on either primitive or user:
defined symbols. itis optional, and simply serves to make the SILT text easier to read.

Without too much difficulty, it is possible to add other primitive symbol types to the language,
should they prove to be important.

5.1.1 Box Calis

The following three examples illustrate possible box calls:

place box(1, 4) at (x0+5, yl+wirewidth/2);
place box (x1i-x0, 4, poly) at (0, -23);
box (1,4) at (4, 5); (* "place” is not required *)

The first two parameters enclosed in parentheses after "box" are the x-length and y-length. If there
is a third parameter, it must be a layer in the set {metal, poly, diff, implant, contact, buried}. It
indicates the layer upon which a particular box is to be placed. If no layer is indicated, then the
default layer (from the "with" command -- see section 5.7) is used. |f the box command appears

without a layer specification, and is not within the scope of a with command, then an error occurs.

The last pair of numbers are the x- and y- coordinates of the lower left corner of the box. None of
the other transformations {described later) may be applied to a box call.

Box calls cannot be given an instance name.

’

An alternative form of the box command can be used that substitutes the word "to" for "at". A

typical call might look something like this:
place box (1, y3+17, poly) to (7, y3+22);

In this torm, the first pair of numbers serve as coordinates for the lower-left corner and the second
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two as coordinates for the upper-right corner, This form makes it much easier to see exactly which
reference point is associated with each edge, and hence provides a much better graphical interface.

5.1.2 Contact Cuts

Contact cuts come in two flavors -- one connects metai to poly, and the other connects metal to

diffusion. A contact cut may be placed as follows:

place cut(poly) at (3, 8):
place cut(diff) at (3, 6);
place cut() at (0, 0);
place cut at (0,0);:

In the third and fourth examples, the layer is chosen in the same way as it is for box calls. If the
layer is not in {paly, diff} then an error occurs.

The cut symbol has its origin at the lower-left corner. It can be rotated and flipped, but it is not

really necessary for this symbol. See section 5.2.

Contact cuts calls cannot be given an instance name.

5.1.3 Butting Contacts

The butting contact symbol has only one type -- the standard Mead-Conway butting contact (see
[3]) oriented horizontally with the diffusion on the left. The origin is at the lower-left corner, and when
the cell is placed, any standard transformation can be applied to it. (See the next section for a

discussion of transformations.)

Since there is only one type of butting contact, the calls must look like ane of the following two

examples:

place butt() <transformation);
place butt <transformation>;

Like contact cuts and boxes, butting contact calls cannot be given an instance name.

5.2 Transformations

Every symbol that is either user-defined or built-in (butting contact, contact cut) has an origin at the
point (0, 0). For the built-in symbols, the origin happens to be at the lower left-hand corner, but this
need not be the case for user-defined symbols.
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Three different kinds of transformations are allowed: translation, rotation, and roflection, Rotation
always takes place about the origin and refiection through either the x. or y- axis. Since all geometry
is constrained to be parallel to the coordinate axes, rotations can only occur in multiples of 90

degrees.

Any sequence of translations can be applied to a symbol, applied in the arder in which they appear
in the SILT description (left to right). The order s important -- a rotation followed by a translation Is
much different from the same translation followed by the rotation.

Rotations are defined relative to a standard clock face (this idea comes from the CLL language).
Imagine the origin of the symbol at the center of a clock face with an arrow super-imposed on it
pointing to 12 o'clock. A rotation of 3 leaves the origin in place, but rotates the arrow so that it points
to 3 o'clock, and so on, The only rotations allcwed are 3, 6, and 8. The syntax for a rotate command

is something like "rotated 3",

Reflections are either up-down (up-down means along the y-axis, or across the x-axis) or left-right.
The syntax for a reflection must be one of: "flipped ud", "flipped Ir" or "flipped rl". The last two are

equivalent,

A translation has the form "at (x_trans, y_trans)". This has the effect of translating the origin of the

symbol to the point (x_trans, y_trans).

A complete transformation is_ made up of any number (including zero) of the above, optionally
separated by commas. If no transformation is given, the symbol is placed at (0,0) in the standard
orientation. Supposing that the symbol "foo" has already been declared, the following are valid

symibol calls on "foo":

place foo() at (0, x0+7);

ptace foo() flipped ud, rotated 3 at(0,0);

place foo() at (&, -3) flipped .ud;

foo at (4, 6);

abc::; foo;

fooinst:: place foo(power=3) flipped ud at (0, §) rotated 9;
place foo() rotated 3;

place foo() at (3, 4) at (7.,6):

The next to last example above places the rotated cell at the origin, and the last one is equivalent

to:
place foo() at (10, 9);
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5.3 Symbol Calls

A call on a user-defined symbol must appear after the symbol has been defined. If desired, the call
may be preceded by an irstance name, followed by "::". Only labelled instances can have their
exports referred to later,

The parameter list is optional, and it it is omitted, all the default values will be taken. Parameters
rnay be specified sither by a positional cail or a key call. if it is a positional call, the parameters are
listed in the order in which they appeared in the symbol declaration. If it is a key call, the form is:

{formal parameter name> "=" <Cactual parameter>

All calls are by value, not by reference. Following is a short list of examples of symbol calls. Assume

that the symbol "too" has already been declared:

a:: place foo(x125, y3=7) at (2, 3);

b(i+1]:: place foo(x1=x1l, power=13) flipped ud at (3, ~8);
q{1,3):: plare foo(x12i*3) at (x0+q[i-1,3]. xmax, 17);
place foo(in<0:3> = x<0:3>);

place foo(1, 2, 3) at (3, 4);

In the second example in "x1=x1", the "x1" on the left is the name of the parameter in "foo", and
the "x1" on the right is the value of "x1" in the calling symbol. It is impossible to tell (from the
example) what variables get set to what values in the final example, since we do not know the order in

which the parameters were declared. See also section 4.1,

5.4 The Block Command

The block command is just a convenient wav to group together a number of SILT commands for the
benefit of a with command, an iteration command, or a conditional command. The syntax is "begin",
followed by any number of SILT commands, followed by "end;". SILT blocks can be nested, if

desired. An example follows:

with poly do
begin
place box (1,2) at (3,4);
place box (3,4,diff) at (5,6);
ptace box (7,8) at (9, 10)
end;

1A warning is in order here. This is a moderately unusual construction, but there must be a space between the '>" and the
" =", Otherwise, the lexical scanner will interpretitas ">=".
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5.5 Iteration Commands

SILT contains a simple iteration scheme that behaves almast exactly like a simple form of the

PASCAL "for" statement. The following examples give most of the flavor of the command:

for | :» 1 to 8 do
for j := 1 to 8 do
bagin
place box(1,1,metal) at (2*i, 2°%j);
place box(1.,1,poly) at (2%1+1, 2%j)
end;

In this first example, "i" and "|" must be declared (presumably as scalars, although they could be

of type xvar or yvar).

a(0]:: place foo(param=0) at (x0, 0);
for 1 :» 1 to 7 do .
a[1):: place foo(param=i) at (afi1-1].xmax, 0);

The example above places 8 copies of the symbol foo side by side. (In this example, "foo" is
assumed to have xmin = 0.) The first instance of "foo" must be placed outside the "for" statement
so that the following instances can each refer to the instance to the left. All the instances could have
different widths, depending upon what "foo" does with "param".

If the intent is simply to place an array of identical symbols in a linear or rectangular array, use the

array command, described in the next section.

5.6 The Arra'y Command

SILT is a rich language, and it would be difficult to implement a graphical front-end that is capable
of taking advantage of all SILT's features. One of the more difficult features to implement in its full
generality is the iteration command discussed in the last section. Since one of the most common
things to do in VLSI design is to lay out an array of symbols, the array commands provide a restricted
form of iteration that can fully implemented by a graphical system.

The array command allows the user to place a linear or rectangular array of symbols at a given
starting point with a given spacing. All instances of the symbol must be identical. if no spacing is
specified, the symbols are placed with x-separation xmax - xmin, and y-separation ymax - ymin, Some

examples of the array command follow:

place array a[0..7] of foo at (q7, b3+9);
array btat{0..3, 0..6) of foo(6,3-delta,8) at (43, ypos-6):
array barf[0..20] of foo() spacing (5,8) at (11,5);
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As in other placement commands, the keyword "place" is opticnal. The array dimensions are
described PASCAL style, and any sort of symbol call can be used after the keyword "of". It
"spacing" appears, it is followed by a delta-x, delta-y pair, and the point following the "at" gives the
coordinates of the symbol having the smallest x (and y, if there is one) coordinate. It is recommended
that this torm be used instead of general iteration when it is possible so that the SILT generated can
be more easily handled by a graphics system.

The array command:
place array af0..7] of foo at (0,0);

Is exactly equivalent to the command:

for 1 :» 0 to 7 do
afi):: place foo at (0,0);

except that the variable "i" is not present. One can, however, refer to such things as "a[3].xmin" and
"a[5].foooutput"” in the usual way,

5.7 The With Command

The "with" command sets the default layer for one SILT command. That command may, of course,
be a block, so the "with” can extend over any number of statements. In the example in section 5.4,
the first and last boxes are placed in poly. If a box call has a layer specification, it holds only for that

box. "With" commands can be nested, with the following results:

with poly do
begin

place box(1,1) at (2,2); (* set in nolysilicon *)
with metal do
begin )
pltace box(1,1) at (3,5); (* set in metal *)
place box(1,2,diff) at (2,3); (* set in diffusion *)
place box(1l,1) at (10, 11); (* set in metal *)
end;
place box(6, 9) at (19, 20) (* set in polysilicon *)
end;

Allowable layers for the "with" command include: “"buried" (buried contact), "contact" (contact
cut), "diff" (diffusion), "implant” (implant), "metal” (metal) and "poly" (polysilicon).

5.8 Conditional Commands

A SILT conditional command is a simple "if-then" statement. It takes the general form:
if <boolean expressicn> then <SILT command>;

The boolean expression is evaluated, and the SILT command is expanded if it is true. There is no
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"else"” clause - use another conditional statement if this is necessary. This is not intended to be a
heavily-used feature of SILT. It could be used to generate river.routing cells, for example, and to
decide which way a wire bends.

5.9 The CIF_List Command

The "CIF List" command attaches a name to a point (and optionally to a layer as well) in the CIF tile
generated. The CIF generated by this command is not standard CIF .- it is the "94" user extenslion
used at Stanford and some other sites. The text Is listed in the plot, and at Stanford, at least, it is
required to be a single identifier (no spaces allowed). Examples of two typical CIF_List commands

follow:

cif_Tist "text" at (9, 10);
cif_list “textl™ at (10, 11, metal);

5.10 External Declarations

It libraries ot symbols in CIF form are available, it is possible to make use of the symbols contained
in them in SILT using the "extern” command. The symbol that is declared external is assumed to be
absolute, and information about its minimum and maximum x- and y-values is not available. If SILT
encounters an Extern statement, an entry is made in a symbol file that contains the CIF number used
internally, the syrnbol name (used in the CIF file), and the file name. Extern declarations should be
intermixed with the rest of the symbo!l declarations in the SILT file. A typical extern declaration

appears below:
extern cifname "filename";

The information in the symbol file can be used to link together SILT and CIF files, either manually,
or with a program. At present, there is a linker that can tink a single SILT file to any number of
ICARUS-produced CIF files,

5.11 Assignment Statements

There are a number of allowable types of assignment statements allowed in SILT. The right-hand-
side is evaluated, and is’ assigned to the variable on the left-hand-side. An error occurs if the two
sides do not conform. Any variable that is stored as a single real number conforms to any other, any
signal conforms to any other, and any signal vector of length n corresponds to any other of the same

length, and so on. Following are a few examples of typical SILT assignment statements:

—




a " 5§,
sig.x :n 7 + a;
sigl v sig2;

sigvec<0:3> v sigveclca:?d;

s$ipl i+ metal;

sigld2y,y 1+ 18;

sigvec<0:7> = inst.sigout<0:7>;

s1g<6> 1= (1,2, metal), (3, 4), (b, 6, diff);

All the examples above except for the last should be clear. In the last case, the fifth signal in the
vactor "sig" is assigned a series of point.layer combinations. These are added to any sets of values
the signal may already have. If an assignment is made to a signal suffixed with a ".x" or ".y", or a
layer assignment is made, then if the signal has a point defined, its corresponding value will be

replaced. Ifit has no value, a new slot is made. Thus, one can put in a new signal value as follows:

sig.x = B;
sig.y 1= 73
sig := poly:

But if the command:
sig.x 1= 6;

is given, a new signal point is not begun -- the value 5 is simply written over.

Assignments of the form:
sig := (3,4,poly);

always generate a new point instance.

It is legal, although probably bad practice, to re-use variable names as illustrated in the foliowing

example:

1= 73

place box(t,i) at (0,0);
i= 9;

place box(1i,i) at (10,10);

If assignments occur only once to each variable, the language becomes declarative. Future
versions of SILT may print warnings when a variable (other than an iteration variable, of course) is

assigned to more than once.

5.12 Connect Commands

The SILT connect commands are used to make sure that a signal point placed by one symbol call
coincides with a similar point in another symbol call. If a connect command is given, SILT simply
makes sure that the points in question do coincide. If not, an error message is generated, and SILT
continues to expand the file. Remember that a signal can correspond to many points. If two signals

are connected (that is, an appropriate connect commanc appears in the SILT file), the connection is
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considered to be successful it any point from one coincides with any point from the other. If layers
are specified as part of the point, then the layers must conform aa well. SILT allows certain
combinations of layers for this purpose. metal_poly, for example, means that this point can be
connected to another point of type metal or poly.

Following are some simple examples of the use of the connect command:

connect a to b;
connact a,sigout to b.sigout;
for i := 1 to 7 do
for j :» 0 to 7 do
connact afi].sigout<j> to afi-1].sigin{}>;

In addition to the simple connect command illustrated above that connects a signal to a signal,
there is a sometimes more convenient form that makes sure that all the signals having the same name
in two instances are connected. This is useful if a bus passes through, and one would like to make

sure that all the bus signals are connected. Some examples follow:

connect all instl to inst2;
for i 1= 1 to 7 do
connect all inst[i] to inst{i-1];

5.13 The Route Command

The route command implements a simple river-router to connect one signai vector of points to
another. The points in the signals must include a layer chosen from {diff, poly, metal}. Both signal
vectors must be essentially parallel -- i.e. they must both be monotonic in the x-coordinates or both in

the y-coordinates. Some examples of the route command appear below:

route(sigl<0:7>, sig2<0:7>, 3, ud);
route(sigi<0:7>, sig2<8:16>, 4, 1r);

In the first example, sig1<0> is routed to sig2<0>, and so on; in the second example, sig1<0> is
routed to sig2¢8>. In the first example, the widths of all the routing wires are 3, and in the second
example, 4. The first example routes the wires generally up-down (the signal vectors are parallel to
the x-axis), and in the second example, the routing is from right to left. The endpoints of the wires do
not have to lie in a line. The points in the signal vectors mark the centers of the endpoints of the
wires, and the wire layer is determined by the layers of the endpoints. There is an example of the use

of the route command in |,
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. Examples

Three examples appear below. Sceme of them are not done in the most efficient way, but are done
in a way that iliustrates as many features of SILT as possible. All the examples are probably too small

to be realistic.

The first one is extremely simple, and is made up of a few calls on & symbol that consists of a few
boxes. Itis intended to illustrate relative geometry. The second example illustrates the use of the
route command. It also illustrates a few other features of SILT. '

The third is the inverter from the Mead-Conway text [3] with some stretch built into it. In this
example, the metal-metal distance can be altered, the input and output wires can be shifted up and

down, and the pulldown ratio can be altered. Four different cell configurations are illustrated.

file relative_geometry;
symbol three_bend(xvar x1, x2, x3; yvar yl1, y2, y3);
default x1 := 4; x2 := x1 + 4; x3 := x2 + 4;
y1 :3 2; y2 := yl + 4; y3 := y2 + 4;
begin
with poly do
begin
place box(2, y3+2) at (0, 0);
place box(2, y2+2) at (xi, 0);
place box(2, y1+2) at (x2, 0);
place box(x3 - x2 - 2, 2) at (x2+2, yl);
place box(x3 - xi - 2, 2) at (x1+2, y2);
place box(x3 - 2, 2) at (2, y3)
end;
ond;
begin
place three_bend at (0,0);
place three_bend(x1 = 8, y3 = 15) at (20, 0);
place three_bend(x2 = 16, yl1 = 5) at (40, 0)
end.
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Flguro 5-1: Relative Geometry Example
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file pad_router;
constant pad_size := 30;
scalar 1;

signal wire_target<0:7>;
symbol pad():

signal output;

export output;

begin )

place box(pad_size, pad_size, metal) at (0,0);
output := (pad_size/2, pad_size, metal)

end; '

symbol pad_raft(scalar pad_spacing);
signal pad_outputs<0:7>;

scalar i, pad_sep;

export pad_outputs;

begin .
pad_sep := pad_size + pad_spacing;
for i := 0 to 3 do

begin

lower[i]:: place pad at (i*(pad_sep), 0):
upper[i]:: place pad at (pad_sep/2+i*(pad_sep),

pad_sep); )
~end;

for i := 0 to 7 do
begin
if (i mod 2) = 0 then pad_outputs<id> :=
it (i mod 2) = 1 then pad_outputs<id> :=
end;

end;

begin '

raft:: place pad_raft{pad_spacing = 10) at (0,0);
for 1 := 0 to 7 do

wire_target<i> := (100 + i*14, 200, metal);
route({wire_target<0:7>, raft.pad_outputs<0:7>, 4, ud);
aend.

Tower {1 div 2]

.output;

upper[1 div 2].output
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Figure 5-2: River Routing Example
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file m_c_inverter;

symbol dinv(xvar x1; yvar yl, y2; scalar p _width);
xvar diff_ctr, diff_edge;
5; y2 := yl + 14;

default y1 :=

p_width :
constraint p_width >= 6; x1 >= 6 + p_width;
yl >= 6; y2 >= yl + 14;

begin
diff_ctr
diff_edge

with diff
begin
piace
plage
place
place
place
place
place
end;

with poly
begin
place
place
place
piace
end;

6: x1 := 12 + p_width ~ 6;

132 + p_width/2;

13 2 + p_width;
place butt rotated 9 at (diff_ctr+2, yl1+3);
place butt rotated 3 at (x1+4, y1+8);

do

cut
cut
box
box
box
box
box

do

hox
box
box
hox

with metal do

begin
place
place
end;

box
box

at (diff_ctr -2, 0);

at (diff_ctr - 2, y2);

{p_width, y1+4) at (2,3):

(1,2) at (diff_edge, y143);

(2,5) at (diff_edge+l, y1+3);
(x1-diff_adge+l, 2) at (diff_edge+3d, y1+6);
(2, y2-y1-7) at (diff_ctr-1, yi1+7)

(p_width, 7) at (2. y1+8);
(4+p_width, 2) at (0, yi1):
(2, y2+7) at (x1, 0);
(5, 2) at (x1+4, y1)

(x1+9, 4) at (0,0);
(x1+9, 4) at (0, y2)

place box(5, 10, implant) at (diff_ctr-2.6, y1+4.6)

end;

symbol inv_set();

begin

place inv() at (0,0);

place inv(p_width = 8) at (25,0);

place inv(p_width = 7, y2=24) at (55,0);
place inv(x1:=16, y1=8) at (80, 0)

end;
begin

inst:: place inv_set() rotated 3 at (0,0):
place inv_sel() rotated 3 at (inst.xmax, 0);

end.



Figure 5-3: Inverter Example
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li. Syntax

expression -> term;
~> expression '+' term;
~> expression '~' term;

term ~> factor; -\
-> term '/' factor;
-> term '*' factor;
~-> term 'div' factor;
-> term 'mod' factor;

factor -> unsigned_factor;
~> '~' unsignred_fector;

unsigned_factor -> 'number';
-> '(' expression ')';
-> value;
-> 'bitop' '(' expression ',' expression ')';

boolexp ~> boolterm;
~> boolexp 'or' boolterm;

boolterm -> boolfactor;
-> boolterm ‘and' boolfactor;

beolfactor ~> primbooifactor;
~> 'not' primboolfactor;

primboolfactor -> '(' boolexp ')';
~> constraint;

instance -> instance_name;
-» instance_name instance_qualifier;

simpie_variable ~> variable_name;
~> variable_name signal_coordinate;

suffixed_variable -)> simple_variable suffix;

suffix -> '.x'
,_> C.y'

e we

instance_name -> 'ident';

variable_name ~-> 'ident'; "

value =-> instance '.' simple_variable;
-> simple_variable;
-> instance '.' suffixed_variable;

-> suffixed_variable;

signal_coordinate -> '<' expression '>';
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signal_range -> '<' expression ':' expressicn '>';
signal_vector -> variable_namne signal_range;

instance_qualifier -> '[' expression ']';
~» '[' expression ',' expression ']';

symbol_definition -> 'symbol' 'ident' formal_parameter_1list ';'

symbol_head

'begin’

symbol_tail

'eﬂd' v;o;

~> 'extern' ‘ident’' ‘'string' ';°';

formal_parameter_list -> '(' variable_list ')';

_) l(! I)V;

..);

symbol_head ~> constant_declaration
variable_declaration
export_declaration
default_declaration
constraint_declaration
symbol_definition_list;

symbol_definition_list ~> symbol_definition_list symbol_definition;
: R ~

constraint_declaration ~> 'constraint' constraint_list ';';
‘ =2

constraint_list -> boolexp;
-> constraint_1list ';' boolexp;

constraint -> expression’'<{=' expression;
-> expression '>=' expression;
-> expression '<>' expressinn;
-> expression '=s' expression;

default_declaration -» 'default' default_Tlist ';';
S I

constant_declaration ~» 'constant' constant_list ';';
a> : .

constant_list -> constnt;
-> constant_1ist ';' constnt;

constnt -> 'ident' ':=' expression;

default_list ~> default;
-> default_1list ';' default;

Jefault -> simple_variable ':=' expression;
-> suffixed_variable ':=' expression;




variablie_declacation -> variable_list ';';
=2

export_declaration -> ‘export' ident_list ';';
->

variable_list => variabie_tgpe_1ist:
-> variable_list ';' variable_type_list;

variable_type_list -> 'xvar' ident_list;
-> ‘'yvar' ident_list;
~> 'scalar' ident_list;
-> 'signal’' 'signal_list;

signal -> 'ident':
-> ‘'ident' signal_range;

signal_list -> signal;
-> signal_list ',' signal;

ident_list -> 'dident';
-> ident_list ',' 'ident';

symbol_tail -> symbol_command;
-> symbol_command ';' symbol_tail;

silt_file ~> 'file' 'ident' *';°

symbol_head
’ 'begin'

syinbo1_tail
‘end' '.':

symbol_command -> symbol_label '::' unlabeled_command;

-> unlaheled_command;
-> box_call;
-> box_to_call;
~> butt_call;

¢ ~> cut_call;
-> connect_command;
-> assignment;
-> with_command;
~> iterate_command;
-> c¢if_list_command;
~> block_command;
~> conditional_command;
~> route_command;
-> qrray_command;
=>

route_command -> 'route' route_list;
route_list -> '(' vectored_signal ',' vectored_signal ',' expression ')’;
l(!

- vectored_signal ',' vectered_signal ',’'
. expression ',' route_direction ')';




route_direction -> 'ud';
=2 'rm'y
-> ety

vectored_signal -> signal_vector;
-> instance '.' signal_vector;

cif_list_command ~> ‘'c¢if_list' 'string' 'at' position;
unlabeled_command -> symbol_call;

block_command -> 'begin’
symbol_tail
‘end"' ;

symbol_call -> 'place' 'ident' actual_parameter_list
orientation_specification;
-> 'ident' actual_parameter_list
orientation_specification;

orientation_specification -> transformation_list;
..);

trensformation_list -> transformation;
-> transformation ',' transformation_list;
-> transformation transformation_list;

actual_parameter_list -> '(’ key_call_list ')"';
-> (' position_call_1list *)';
=> v(' ')';

->

key_call_list -> key_call;
-> key_call_list ',' key_call;

position_call_list -> expression;
-> position_call_list ',' expression;

key_call -> simple_variable '=' expression;
~> sijgnal_vector '=' signal_vector;
g 3 g *
-> signal_vector '=' dinstance '.' signal_vector;
g gnal__
position -> '(' expression ',' expression ')';
-> '(' expression ',' expression ',' layer ')';

transformation -> 'flipped’' 'ud';
-> '"flipped’' 'rl1';
-> 'flipped' 'ir';
-> 'rotated' 'number’';
-> 'at' position;

box_call -> 'place' 'box' box_parameters 'at' position;
-> 'box' box_parameters ‘'at’' position;
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box_to_call -> 'place' ‘'box' box_parameters 'to' position;
-> 'box' box_parameters 'to' position;

box_parameters -> '(' box_size ')';
-> '(' box_size ',' layer ')';

box_size -> expression ',' expression;

butt_call -> ‘'place' 'butt' orientation_specification;

-> ‘'place’ 'butt' ‘(' ')' orientation_specification;

-> 'butt' orijentation_specification;
-> 'butt' '(' ')' orientation_specification;

cut_call -> 'place' 'cut' orientation_specification;
-> 'place' 'cut' '(' ')' orientation_specification;

-> 'place’ 'cut' layer_parameter orientation_specification;

-> 'cut' orientation_specification;
=> 'cut' ‘(' ')' orientation_specification;
~> 'cut' layer_parameter orientation_specification;

layer_parameter -> '(' 'diff' ')';
_) l(! 'po'lyO ')':

layer => 'poly’;
-> 'metal’;
-> 'diff';
-> 'buried';
-> 'implant';
-> 'contact';
-> 'metal_poly';
-> 'diff_poly';
-> 'diff_metal';
-> 'none';

assignment -> simple_variable ':=' expression;

-> suffixed_variable ':=' expression;

-> simple_variable ':=' layer;

-> simple_variable ':=' position_list;
signal_vector ':=' signal_vector;
-> signal_vector ':=' instance '.' signal_vector;

1
~

position_list -> position;
-> position_1tlist ',' position;

connect_command -> ‘'connect’' value 'to' value;
-> 'connect' 'all® instance 'to' instance;

with_command -> 'with' layer 'do' block_command;

iterate_command -> 'for' 'ident' ':=' expression ‘to’'
expression 'do' symbol_command;

conditional_command -> 'if' boolexp 'then' symbol_command;

symbol_label -> instance;



array_command -> ‘array' ‘'ident' a_list 'of' a_list_call
. spacing 'at' position;
~> ‘'place' 'array' 'ident' a_list 'of' a_list_call
spacing 'at' position;

a_list => '[' expression '..' expression ']';
-> '[' expression '.,.' expression ','
expression '..' expression ']‘;

a_list_call -> 'dident' actual_parameter_list;

spacing -> 'spaced' position;
-> !



. SILT Reserved Words

The tollowing icientifiers are reserved by SI.T

and "y". Thess are used as suffixes of points.

ALL
gITOP
COMNNECT
DEFAULT
Do
FLIPPED
LR

NOT

RL
SYMBOL
X

YMAX

AND

BOX
CONSTANT
DIFF
END

FOR
METAL
OF
ROTATED
THEN
XMAX
YMIN

. ARRAY
BURIED

CONSTRAINT
DIFF_METAL
EXPORT
GLASS
METAL_POLY
OR

SCALAR

T0

XMIN

YVAR

AT

BUTT
CONTACT
DIFF_POLY
EXTERN
IF

MOD
PLACE
SIGNAL
uD
XVAR -

. The only ones that may be a little surprising are "x"

BEGIN
CIF_LIST
cur

DIV
FILE
IMPLANT
NONE
POLY
SPACING
WITH

Y
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1. Introduction

The YALE (Yet Another Layout Editor) layout editor makes hierarchical cell layouts on a SUN
workstation. It is meant to be used with the SILT translator. All the files produced and read by YALE
are written in the SILT language (see [3]). The SILT program translates these into a CIF format for use

with other programs such as design rule checkers, circuit simulators, and masik-making software.

1.1 System Overview

The YALE layout editor runs under the V Kernel (see [2]) on a SUN workstation. The V Kernel is a
message-based kernel supporting multiple precesses of which YALE might be only one. Since the
current implementation of YALE is large, it is unlikely that too rnuch else will be running on the

workstation at the same time as YALE.

To run YALE with any reasonably large layout at all requires more than the minimal 256K SUN

configuration. The more memory is available on the SUN workstation, the better YALE will work.

Even if YALE is the only program running under the V Kernel, there are two processes with which
you, as the user, must be familiar., One is the layout editor itself, and the other is the window manager.
YALE itself has no idea where its viewports are presented on the screen, or even how many viewports
there are. You are free to create more viewports opening on different parts of the cell being currently
edited, and to move these viewports around and to adjust their sizes and magnifications, There is
nothing special about YALE in this respect. Any process using the above-mentioned window

manager can do the same thing.

At any time during a session, all the keystrokes and mouse-clicks are directed sither to the window
manager or to the YALL editor (assuming these are the only two processes running). Obviously, the
input is interpreted differently by the two processes, so if something surprising happens, make sure

that your input is going to the process you think it is.

It is easy to tell at a glance whether you are typing to (or "mousing" to) YALE or to the window
manager. The shape of the cu.ssor changes. In both cases, the cursor is an upward-pointing arrow,

but tor the window manager, it is shorter, and its lower half forms the letter "w".

Thara are really more than two processes running during a YALE session, but thae ¢ litor and the
window manager are the only two with which you need to deal. Other procusses include one process

that is busy watching the keyboard for input, and another that always watches the mouse.
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1.2 Starting Up

To load YALE, you must use the V Kernel icder, cailed "Vioad". This is done by typing "n Vioad"
(note the capitalization here) to the monitor of the SUN workstation. After a vrhile, this program will
respond with something like:

V Kernel Loader -~ Version 3.1 - 28 June 1982
Program name:

Type in "Yale" (aqain, nute the capltalization), and press <CR> (<CR> stands for the carriage return
key). The system will respond by typing a few lines of exclamation marks, and finally with:

>

Type "c<CR>" ("c" stands for continue -- the reason that this step is necessary is that breakpoints
could be put in here), and the program will start,

Three initial viewports will be painted on the screen whose functions are described in the next
chapter, and you will be prompted for some startup inforrnation in the tty viewport (which is positioned

initially in the lower-left hand carner of the screen),

1.3 Impiementation

YALE is implemented entirely in the "C" programming language, and most of the internals of the
YALE cditor (almost everything save the display code) were thoroughly tested on a VAX before being
ported to the SUN workstation. Since most of it has already been ported once, it should not be too

difficult to port it again. All that needs to be written is another set of display routines.

Although YALE runs under the V Kernel, it does not make heavy use of its services. The V Kernel
provides a process to track the cursor, and to read the mouse and keyboard. The window manager
runs as a separate process, but this is not necessary, and in the initial implementation, it was part of
the YALE editor.

A reasonably clean separation of the editor part from the window manager part has been made to
simplity some experiments using YALE in a distributed mode -- YALE will run on a VAX, and the

window manager and a display list intarpreter will run 2n the SUN workstation.

In addition to the V Kernel, YALE makes use of the SUN rasterop (see [1]) package for the display
of rectangles and stipples on the screen, and of the leaf package (see [4]) for remote file access.



2. User interface

This chapter describes the general featuires of the user interface for both YALE and the window
manager. An attempt has been made to make the command interaction similar for both programs.
Most of the conventions described below apply both to the layout editor and to the window manager.

2.1 Initial Viewports

When YALE starts up, it displays three viewports. One of these is called the tty viewport, and is
used primarily for command feedback, error messages, and user type-in. It behaves exactly like a
glass teletype in that each line is typed at the bottom, .and lines typed earlier are scrolled up.
Although the initial viewport is small, the tty window keeps 24 lines of text, and earlier commands can

be examined by calling on the window manager and enlarging the viewport.

The second viewport is called the status viewpart, and contains some YALE status information.
Such things as the current file, the name of the cell being edited, x- and y- coordinates of the last
mouse click, the currently selected layer, and the default widths of the layers are presented. The

information here will be covered in more detail later. See .,

The third viewport is the main YALE graphics viewport. This is where the currently open cell Is
presented. Most other YALE viewports will be graphics viewports, but views opening on different

portions of the cell being edited.

2.2 The Mouse

\;ALE and the window manager both receive most of their commands from the mouse. When the
mouse is held with its three buttons on top, the left-most mouse button is called number 1, the center
is number 2, and the right-most button’is numbered 3. In some of the prompting that appears on the
screen, and in the documentation that foliows, they are referred to as MB1, MB2, and MB3.

Some YALE commands require that more than one mouse button be pressed at the same time.
Since it is impossible to press the buttons at exactly the same time, the mouse input is interpreted by
YALE as follows: The interpretation begins when the transition is made from all buttons up to at least
one button down, It ends when all buttons are up again. All buttons depressed in the interim are
recorded as part of the mouse event. Thus, as long as you have not released all the buttons, you can

always press another button. Because of this, if the mouse event is not yet complete, it is always



possible to press down all three buttons, and YALE takes advantage of this by defining a three-button
push as aborting the command. If you accidentally press the wrong button and notice it before it is
released, simply press dowr the other two buttons and then release all three, and there will be no net

effect,

In both YALE and the window manager, the general philosophy is to bind the most useful
commands to the left and center mouse buttons (MB1 and MB2). All other commands are accessed
by one or more pop up menus, described in the next section. For both programs, the pop up menu
containing the rest of the commands is accessed by pressing and releasing the third mouse button.

The action of pointing to an object or screen position with the cursor, and choosing it with a mouse
button click is often referred to here as "bugging"”. One can thus "bug a rectangle" to select it, or

identify a viewport to move by "bugging it",

2.3 Pop Up Menus

Since there are only 7 mouse button combinations, even if they all were to be used, there are too
many YALE commands to go around. The same thing is true of the window manager, so only the
most useful commands are bound directly to mouse clicks, and the rest of the commands are invoked
using pop up menus. For both the window manager and for general YALE layout editor commands,
the pop up menu is gotten by using MB3 by itself. A menu containing a variable number of iterns
appears under the cursor at that point. To select a command presented there, move the mouse until
the tip of the cursor inside its box, and press any button. (In other words, "bug" the correct menu
entry.) Sometimes menus are two-level, so a second menu will appear for the sub-command. If you
invoke a menu by accident and do not really wish to select any of the commands in the menu, simply

move the cursor completely outside the menu and press any button.

Important! To get a pop up menu for YALE, you must press the third button while the cursor is in
one of YALE's windows. in this way, it is possible to use the window manager with more than one
process. If the third mouse button is pressed while it is outside any window, it will have no effect, On
the other hand, when your input is directed to the window manager, the main pop up menu (for the

window manager) can be pressed at any time.



2.4 Command Feedback

As each command is issued, whether it is clicked in with the mouse buttons, or accessed through a
series of one or more pop up menus, an English sentence is gradually built up in the tty viewport both
to show what command is being specified, and, where possible, the next input required of the user. If
there is ever any confusion about which command is being specified, the last line in the tty viewport
shows what is going on and what is expected next.

There are a few abbreviations that are commonly used in this feedback in addition to MB1, MB2,
and MBS for the mouse buttons. These include:

Abbreviation Meaning
T: Type in textual data, followed by <CR>.

B: "Bug" an object or position on the screen by pointing to it with the cursor and
pressing (usually) MB1,

M: A menu selection of some sort is to be made. Move the cursor so that its tip is in
the correct menu entry, and press a mouse button. Some menus are special, and
have "typein" entry at the bottom. If this entry is selected, you will be asked to
type in the correct information, followed by a <CR>. This mechanism is used when
there is a set of common choices, but where you may wish to use some unusual
choice from time to time.

2.5 Typing in Information

From titne to time, certain of the commands require that you type in some textual information -- the
name of a new cell definition, the name of a reference point, or the name of a file to be used for input
or 6utpul. When this happens, a prompt appears in the command feedback viewport, and you simply
type in the texy, followed by a carriage return. For new names, YALE obviously has no ¢hoice but to

ask you directly for the information.

On the other hand, since the most commaonly typed text will be the names of cell definitions that are
already knowr (such as "expand cell named ...", "create instance of cell named ..."), YALE keeps a
list of a few of the most recently referenced cell names. Thus, when you need to specify a call name,
YALE puts up & Pop Up raenu containing these most recently referenced cells. The last item in the
menu is always "Typein", and if that entry is selected, you vill be requestad to type in the nama of the

definition as you would for any other text string.



YALE automatically converts all typed input and all input from files to lower case (except, of course,
for UNIX file names). You may type your names in using any case you wish, but YALE will print them
back to you in lower case only.

Usually, a mechanism analogous to the three-mouse-button abort exists for textual input. When
YALE requests type-in, it is not looking at the mouse, sc it cannot interpret a three-button abort.
When a name of some sort is required and you have committed to a typein, typing a <CR> with no text
aborts the command. This mechanism is not so universal as is the one using three mouse buttons.

2.6 The YALE Coordinate System

YALE (and SILT) work in a standard mathematical right-handed cartesian x-y coordinate system.
SILT allows arbitrary real coordinates, but YALE restricts the coordinates to be integers or half-
integers. When selecting a point on the screen, the nearest point with half-integer coordinates is

chosen.

The grid marks that can appear on the screen are always placed at distances that are equal of a

power of 2 times fambda. The exponent can be negative, however.



3. The Window Manager

3.1 Displays and Viewports

During any session, there may be many distinct "universes" whose contents you may wish to view,
When YALE starts up, there are three -- the text shown in the tty viewport, the information shown in
the YALE status viewport, and the Qeometry of the cell being edited in the graphics viewport. If the
terminal is being used for other user processes, additional viewports may be required.

Each of these "universes" is called a display. A process may have zero or more displays
associated with it. (In particular, the mouse and keyboard watcher processes have zero.) In addition,
it may be useful to have more than one view of any given display. For VLSI editing, one ofter wants to
have one large-scale view of the cell being edited, and another zoomed-in view of the small region
being actively changed. For complex, long-distance wiring, it may be useful to have views of each of
the areas on the chip where the wires bend.

It is sometimes useful to make a distinction among the terms "display"”, "viewport", and "window",
especially between the latter two. The display ¢ontains all the objects in the universe of interest,
whether they are shown on the screen or not. The viewport is the physical area on the display screen
upon which objects are displayed, and the window contains the same information as the viewport, but
is described in terms of world (or YALE) coordinates instead of in screen coordinates. Thus, one
might move a viewport on the display screen, and one would center a window coordinate in the

current viewport.

Each individual view of a display is called a viewport, and occupies some physical space on the
screen. The window manager can change both the part of the display being viewed, and that view's

magnification.

The window manager can handle up to 8 different viewports. All must be rectangular and non-
overlapping. It is possible to shrink little-used viewports, so it is not impossible to make use of all 8
viewports occasionally. It can also be used to create more or fewer viewports associated with the
same display. Usually, however, 4 or 5 viewports should be all that are required. If the window
manager is someday modified so that it can handle overlapping viewports, all this may change.
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3.2 Entering and Exiting the Window Manager

When YALE starts running, all input is directed to the YALE: layout editor. There are two ways to
get the attention of the window manager, and to begin directing input to it.

The easiest method is via a seiection from YALE’s main pop up menu. Press MB3, move the cursor
to point at the entry entitled "Window Manager", and bug it. The cursor will change from a simple

arrow to a shorter arrow with the character "w" underneath,

The second method is to type the so-called "brain escape character", which is initially set to be
"+C" (control-C). The cursor will immediately change to its window manager form. The brain escape
character can be reset to something besides "tC" using a command to the window manager (see
3.4).

The window manager is exited in only one way -- this is via a selection from the window manager’s

main menu (again accessed using MB3). The menu entry is labeled "Return to YALE".

3.3 Zooming In and Out

The most useful commands that can be issued to the window manager are for zooming in and out
on the view. MB1 is bound to "Zoom in" and MB2 is bound to "Zoom Out". These commands affect
only the viewport in which the cursor is displayed when the button is pressed. It is therefore possible

to have different viewports displaying the c2!’ being &. 1ed with different magnifications.

When MB1 ("Zoom In") is pressedin + =~ the magnification in that viewport is doubled, and
the point at the tip of the cursor arr. s ¢ _ars in the center of the new screen. MB2 ("Zoom Qut")
has just the opposite effect -- the magnitication factor s cut in half, and point at the tip of the cursor

arrow again appears in the center of the new view.

Notice that ane can change the view without changing magnification simply by zooming out, and
then zooming in to a new center, and ¢an thus be accomplished using two mouse clicks. If the cell
being displayed is complicated, however, it is probably easier to use the "Center Window" command
(described below), since the display is re-created after each zooming action.

In some viewports, zooming in and zooming out have no effect on the material displayed. This is
usually the case where the viewport is displaying some textual material. Neither the tty viewport nor
the status viewport are aftected by these cornmands, but ali the YALE graphics viewports are.



3.4 The Main Window Menu

The main window manager menu is accessed using MB3. Each of the possible menu commands is

described in a paragraph below:

Create viewport. This command creates another viewport on the screen. The next two mouse
clicks are interpreted as opposite corners for the new viewport, and may be given in any order.
Finally, an existing viewport is bugged to show which display is to be painted in the newly created
viewport. [f an attempt is made to ¢reate a new viewport that overlaps existing viewports, the error
message "illegal stretch™ will appear in the tty viewport.

Move Edge. To change the shape of a viewport, bug the "Move Edge" entry in the main window
manager menu, move the cursor to an edge or corner of a viewport, and press any mouse button.
Then move the cursor to a new screen position, and press the button again (remember that if all three
buttons are presed at any time, the command can be aborted with no effect). The viewport is redrawn
with its corner or edge moved to the second mouse position. Again, since viewports are not allowed

to overlap, a common error is "illegal stretch",

Move Viewport. To move a viewport rigidly on the screen so that it remains the same size and
shape, and continues to view the same display, bug the "Move viewport" command in the main
window manager menu. Next, choose a point of reference in the viewport to be moved, move the
cursor t¢ that point, and press a mouse button. When the cursor is moved to a new position on the
screen, and a mouse button is pressed, the point of reference in the old viewport is moved to that
position. Usually this command is easiest to control if the reference point is selected near one of its
corners. The window manager makes sure tnat the viewport in its new position does not lie outside
the screen boundaries, and that it does not overlap existing viewports. If an attempt is made to move
a viewport off the visible screen, its position is adjusted to put it entirely on-screen. if an attempt is
made to overlap another viewport, an error message is printed in the tty viewport, and nothing

happens.

Delete Viewport. This command deletes the viewport in which the cursor sits when the next
mouse button is pressed. Don't delete the last viewport on any given display, or you may have a hard

time getting back the view. This mis-feature should be corrected someday.

Center Window. This command allows one to change the view so that a new point in the display

is moved to the center of the viewport. Simply press a mouse button with the cursor in a viewport, and
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the viewport will be redrawn with that point moved to the center of the new view. it was pointed out
earlier that exactly the same change can be affected using a "Zoom Out" followed by a "Zoom In"

command.

Redraw. From time to time, YALE or the window manager gets mixed up about exactly what is on
the screen. This command simply causes the contents of all viewports ¢f be redrawn from scratch.

When all the bugs are removed, this command will be, too.

Brain Escape. This command resets the window manager escape charact. which was initially
set to be tC). A new escape character is‘ typed, followed by a carriage return. The only restriction is
that the character can not be "%" (See 11.1), but it is probably a bad idea to use printing characters
that you may wish to use for typing information to YALE. Since YALE has a built-in command for
accessing the window manager, this command probably has low utility. Other programs that will
eventually run under the V Kerne!l may have no idea that there is anything like a window manager, and

it is for them that this facility was included.

Toggle Grid. To aid in editing, it is sometimes useful to have a grid presented on the screen. The
grid points are always the same distance apart on the screen, so at different magnifications, they
correspond to different lambda-measures. After selecting the "Toggle Grid" option, you must then
show which viewport is affected with another mouse click. If the grid is currently displayed in that
vieWport. it is turned off, and vice-versa. The grid may be toggled in any viewport, but it is probably

not too useful to display a grid in any but a graphical viewport.

Return to Yale. This command diverts all further type-in and mouse clicks back to the YALE

layout editor.
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4. Editing with YALE

The next few chapters deal with the YALE layout editor itself. This first chapter gives an overview
of the editing system, and the others describe in detail the commands that can be issued.

4.1 Yale Overview

Before going into a description of the meaning of each of the YALE editing commands, a short
description will be given of the various sorts of things that the YALE editor manipulates. What is
presented in the next few paragraphs is condensed, and an understanding of the SILT language
would be extremely useful. SILT is a powerful language for describing cell layout, aind YALE deals

only with a small subset of the available SILT commands.

Because of this, it may be necessary to use a combination of YALE and hand-editing of the SILT
format files produced by YALE to deal with a complicated layout. All the basic cell layout can be done
with YALE, together with some hierarchical depth. If it is necessary to make use of SILT's river.
routing facilities, or of other higher-level features, they will have to be specified by hand, in SILT,

using the text editor of your choice.

Each layout is defined in terms of a hierarchical set of symbol calls?, with one symbol designated as
the master layout symbol. A general SILT file could have many different commands in the main file

body, but YALE restricts it to having a single symbol call in the main file body.

Each symbol is made up of rectangles, reference points, and calls on other symbols. See the SILT

documentation for a complete description of reference points.

The rectangles on the screen are represented with stipple patterns, the symbol calls are normally
expanded, and the reference points are displayed as labeled horizontal and vertical lines. In addition
to the user-defined reference points, another pair (the x- and y- origing) are also shown. In some
ways, these origins behave exactly as the other reference points, and in other ways they do not. The
main difference is that it is not possible to move the origin reference points. The origin of the cell is

the point where the origin reference points cross.

1ln this documentation, the term “symbol” and "cell" are used almost interchangeably. SILT uses the term "“symbol”, but
the term "cell” is also widely used.
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A symbol instance is placed with its origin relative to a horizontal and a vertical reference point. A
rectangle has its top and bottom edge relative to horizontal reterence points and its left and right
edges relative to vertical reference points. For a symbol or rectangle edge to be placed "relative to a
reference point" means that it remains a fixed distance from that reference point. If the reference
point is moved, then all objects placed relative to it are moved as well. If both of a rectangle’s vertical
edges are relative to the same vertical reference point, and the reference point is moved, then the
rectangle will be moved rigidly. If the edges are relative to different reference points, then the
rectangle will stretch or shrink if one of its reference points is moved without moving the other.

In SILT, there is really nothing analogous to the origin reference points, but they are required for a
reasonable graphical interface. The SILT code for a rectangle produced relative to the reference
points named "xref" and "yref" would look something like this:

pltace box(xref + 3, yref ~ 6, metal) to (xref + 11, yref + 1);

while a rectangle placed relative to the origin reference points would generate the following SILT

code:
place box(3, -6, metal) to (11, 1);

If "xret" and "yref" are moved so that they are coincident with the respective origins, the two lines of

SILT code would represent the same box.

4.2 A Typical Editing Session

Before going into detail about the commands available in the YALE editor, it is useful to give an
idea of how a typical editing session would be carried out. Let us assume that you wish to design a

new cell, and already have available a small library of SILT cells in a file on your VAX.

After loading the V Kernel and the YALE program, some initialization is required. You will be asked
for the name of the VAX with your files, your user name and password, and the name of the file that
contains (or will contain) the layout produced. After YALE has verified that the VAX is up, that the
user name and password are valid, and that the file exists (if the name is a new one, it is created), you

are left in a state where the input goes to the layout editor,

From now on, the procedure is 10 open one of the symbols for editing, to make changes to it, and
then to close it and open another symbol. Only the cell currently open can be maodified.
Moditications take the form of adding or deleting rectangles, sub cells, and reterence points. If a cell
is closed, then one of its subcells opened and modified, and the original cell opened again, all

instances of the subcell in the original cell will show the modifications.
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Cells are opened either with the "Expand Cell" command, or by creating them with the "Create Cell
Instance" command. Cells are closed simply by opening another cell. Having a cell open is not really
analogous to having a file open on a computer -- open cells are not particularly vulnerable. The fact
that a cell is open simply means that it is the one displayed, and to which modifications will be made.
There are not too many YALE operations that cannot easily be undone, except possibly deleting an
entire cell definition, and deleting all the selected items, when many of them are selected.

When a new symbol is created, it contains nothing but an x-origin and a y-origin. These behave
somewhat as default reference points. At any point during the editing, exactly one horizontal and one
vertical reference point is selected, and the selected reference point is shown by being displayed with
a bolder line. In a newly created cell, the x- and y-origins are the selected reference points. Any
geometry (rectangles and symbol instances) which is entered is placed "relative to" the currently
selected reference points -- that is to say, if the reference point is moved, the objects placed relative

to it will also be rigidly moved.

Rectangles that are to remain rigid when the reference points are moved are easily inserted -- just
make sure that the appropriate vertical and horizontal reference points are selected before inserting
the rectangle. If it is required that a rectangle stretch or shrink when some reference points are
moved (i. e. one edge is relative to one reference point, and the other edge is to be relative to
another), the usual procedure is to make sure that one of the reference points is selected when the

rectangle is inserted, and then to re-reference the other edge to a different reference point.

it is easy to see if all the internal symbols and rectangles are placed relative to the correct .eference
points -- simply move the reference points around a little, and make sure that the components move

and stretch as they should. Any parts that do not can then be re-referenced.

As the editing proceeds, it is usual to make backup copies of the work from time to time. The first
time the "Write Backup" command is invoked, you will be asked for a file name and a name of the
master symbol. (The master symbol is usually the one corresponding to the entire chip. If there is no
master symbol, any symbol name will do.’ After this, making a backup is simple -- just issue the "Write

Backup" command, and the old backup file will be over-written with the new version of the layout,

’

At the end of an editing session, the "Write Main File" command is usually given, followed by the
"Quit" command, YALE is aborted, and you are returned to the SUN monitor,
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4.3 The Status Viewport

Throughout a YALE editing session, one viewport is devoted to presenting the status of the
session. The meaning of some of the information in this window is obvious, such as the name of the
main input file and the name of the cell currently open for editing.

The most important feature of the status viewport is the set of seven small stipple pattern samples.
These are the stipple patterns for the various layers. Above each sample of the pattern is an
abbreviation for the name of the layer: "metl", "poly", "dift", "imp!", "burd", "glas"”, and "cont"
standing for "metal", "polysilicon”, "diffusion"”, "implant", "buried”, "glass", and "contact cut",
respectively. Underneath each of these rectangles is a number indicating the default width of a wire
made of this matérial. If the default width for the metal layer is 4, this means that whenever the metal
layer is selected, all rectangles placed in the currently open cell will be made of metal, and will have
width 4.

One of the seven patterns is selected (outlined), and this is the layer that will be used by the "Add
Rectangle" command. To select another layer, simply move the cursor so that it points to a new
stipple in the status viewport, and depress a mouse button. The newly selected stipple should be

selected (outlined), and the previously selected layer should have its outline removed.
The default widths associated with each layer can also be changed. See 7.1, below.

Also in the status viewport are four entries !abeled "x:", "y:", "dx:", and "dy:". Every time a mouse
button is clicked in a YALE graphics viewport, these values are updated. The "x:" and "y:" values
give the absolute position of the click relative to the origin of the cell; the "dx:" and "dy:" values give
the displacement from the last "x:" and "y:" values. These entries can be used to measure distances
within a cell,-and to find out about where you are if the view is zoomed in so far that there are no

reference points visible.

Finally, there is an entry for the currently active repeat command. A few of the common commands
in YALE have the feature that although they must be specified using a series of menus originally, they
may then be easily repeated. The name of the most recently issued command of this sort appears

here.

To cause that command to repeat, simply depress the two left-most mouse buttons (MB1 and MB2).
Exactly what happens next 1s slightly dependent on the repeated command. The three repeatable
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commands are "Delete Selections", "Create Cell Instance”, and "Add to Selections". See 8.2, 6.2,

. and 8.1, respectively for details on how the repeat command will behave in each circumstance.
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5. Adding Rectangles and Selection

The addition of rectangles to a layout, and the selection of objects in a layout to modify are the ‘wo
most common operations in YALE. Thus, each is tied to a single mouse click. The exact action of
these two important commands is described in the two sections that follow.

5.1 Add Rectangle

At any point during the editing, there is a detault layer for rectangles selected, and a default width
for that layer. Placing rectangles on the screen involves marking the two endpoints of the wire using
MB1. YALE figures out whether the selected points are more vertical or more horizontal and inserts
an appropriate rectangle. The first point selected is guaranteed to be the center of one end of the
wire. For example, suppose that MB1 is first pressed at the point having coordinates (15, 32), and is
next pressed at (43, 35). The change in the x-direction (28) is much greater than the change in the y-
direction (3), so the rectangle is assumed to be a horizontal one. Since MB1 was first pressed with a
y-coordinate of 32, this will be the y-coordinate for the center of the inserted wire.

If MB1 is pressed accidentally, placement of the rectangle can be aborted by pressing any but MB1
(in particular, all three buttons can be pressed, causing the usual abort to occur).

When a rectangle is inserted, all currently selected items are de-selected, and the newly inserted
rectangle is selected. This makes it easy to move it to the correct position or to delete it if it was
placed incorrectly,

The left and right edges of the rectangle are placed relative to the currently selecied ve:tical
reference point, and the top and bottom edges are placed relative to the selected horizontal reference
point. If there is no cell currently open, an error message will be presented in the tty viewport.

5.2 Select Item

To select an item, point the cursor at it, and press MB2. If the item is a symbol instance or
reference point, it is simply selected. If it is a rectangle, things are a bit more complicated. If the
cursor is in the center of the rectangle, the entire rectangle (all four edges) is selected. If the cursor is
pointing to an edge, just that edge is selected. If the cursor is pointing to a corner, then both of the
edges adjacent to that corner are selected. In every case, all other currently selected items are de-
selected before the selection takes place. A selected symbol instance is displayed with a bold outline,
and a selected rectangle edge is likewise highlighted. '
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Since objects may overlap each other in an arbitrary way, there must be some mechanism for
disambiguating a selection that could be interpreted in more than one way. The disambiguation
algorithm is described below.

1. if there is only one object under the cursor, then that object is selected.

2. If there are no objects under the cursor, then YALE looks within a few pixels of the cursor
for nearby objects. If there is exactly one nearby object, then that is selected.

3. If there is more than one object under the cursor, or if there are no objects under the
cursor, but there is more than one nearby object, then the areas of all possible objects
are compared, and the object with the smallest area is selected. Reference points are
judged to have essentially infinite areas.

4. If there is still ambiguity (i. e. there are still two or more items with exactiy the same area
and under the cursor),then the object with the smallest height-to-width ratio is selected.

. Finally, if there is more than one object with exactly the same height and width of smallest
area under the cursor, a series of possibilities is presented in the tty viewport. A short
description of the object is given, and it can be selected by typing "y<CR>". Typing
"n<CR>" causes the description of the next possible object to be presented. As soon as
the user responds positively, that item is selected, and the selection is finished. If
"n{CR>" is typed in response to every option, then nothing is selected.

[92]

Note that it is still possible to construct an example where it is impossible to select a certain piece
of'geometry. in particular, it will happen when a large object is completely covered by smaller
objects, as is the metal layer in a butting contact. If this happens, the only way out is to delete or
move the object(s) causing the conflict, select and deal with the object of interest, and then re-create
or move back the other objects. This should not happen often.

Exactly the same disambiguation algorihm is used with the "Add Selection" command, described

below.

The most commonly-used commands in YALE are the "Add Rectangle” and "Select” commands,
accessed using MB1 and MB2. All the other YALE commands are invoked through a series of one or
more pop up menus. The main pop up menu is accessed by pressing MB3. It presents 10 options
that are described in the following chapters. Most of the items in this main menu are really just
categories of commands, and simply bring up a sub-menu containing specific commands. A few of
the entries, however, are bound directly to commonly-used commands.
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6. Create commands

Selecting the "Create" entry from the main YALE pop up menu brings up the sub-menu of the
create commands. There are five entries in the sub-menu, including "Create Array", "Create Cell
Definition", "Create Cell Instance"”, "Create Copy of Cell Definition” and "Create Reference Point".
Each is described individually in a section below.

6.1 Create Cell Definition

This command creates a brand-new symbol (cell) definition. You are asked to type in a name for
the new symbol, and that symbol is created and opened. The newly created symbol will contain
nothing but an x- and y- origin, and will be presented in ail YALE's graphical viewports with exactly
the magnifications that were there previously. If this command is accidentally selected, and it is not
desired to create a new cell definition, simply type a <CR> instead of a cell name. This aborts the

command as if nothing happened.

6.2 Create Cell Instance

This command inserts an instance of a previously defined cell within another, After selecting this
command, you next show which symbol is to be inserted (via the most-recently-used-cell pop up). |f
you wish to place the symbol exactly as defined (no rotation or reflection), simply identify with MB3
exactly where you wish the origin to go. If the newly-inserted instance is to be placed with a rotation
or reflection, again show where it is to go, but do so with MB1. You will then be presented with a pop
up menu including such things as "flip Ir", "flip ud", "rotate 3", "rotate 6", and "rotate 9". "flip Ir"
and "flip ud" refer to mirrorings (through the origin) left-right and up-down, respectively. The
numbers in the rotate command are described in terms of a standard clock face. Imagine that in your
original symbol, the hour hand points straight up. "rotate 3" means to rotate that hour hand until it
points to the "3", and so on. Any combination of these transformations can be specified, and they are
done one after another to the symbol before it is placec]. In practice, at most 2 are required. For
example, a "rotate 3" followed by a "rotate 6" would be exactly equivalent to a "rotate 9" selection,
but there is no easy way to specify the the combination of a "rotate 3" tollowed by a "flip ir"

command.

When you are finished specifying the transform, choose the bottom selection from the menu. The

symbol will then be placed where the original MB1 was pressed.



As was the case with rectangles, the symbol instance is selected as it is inserted. In this way, if it is
placed incorrectly, it is easy to issue a "Move Selected Objects" command and adjust it to the correct

position.

The new symbol instance’s origin (the intersection of the x- and y- origin reference points) is placed
relative to the currently selected reference points in the currently open cell. An atteinpt to insert &

symbol when no cell is open results in an error message in the tty viewport.

One often wishes to repeat this command over and over -- inserting a series of symbol definitions.
Therefore, the "Create Cell Instance” command is repeatable. As soon as it is used, the "Rpt Cmd:"
entry in the status viewport is updated to show that the currently repeatable command is "Create
Instance"”. To repeat the command, simply press MB1 and MB2 at the same time. You will
immediately be presented with the pop up menu of recently touched symbol definitions, and from then
on, the command proceeds in exactly the same way as if you had gotten there by the usual path of
getting the main YALE pop up, selecting "Create", and finally selecting the sub-menu entry "Cell

Instance".

The "Create Cell Instance"” command remains the repeatable command until another repeatable
command is issued. There are only two others -- "Delete Selections"”, and "Add Selections”.

6.3 Create Copy of Cell Definition

General SILT allows cells to be called over and over again with different parameters. YALE will
eventually ailow this, but now, dlthough each cell definition may allow for stretchability, it can only be
called with one set of parameters. If you wish to use a cell definition in two places with different
parameters, you must make a copy of the cell definition, with a different name, and use that new

definition with the new parameter set.

To make a copy of a cell definition, use the "Create Copy of Cell Definition” command. You will be
asked to identity first the name of the cell definition to copy using the menu of recently touched
symbol names. Next, you must type in the new name for the copy. The command can be aborted in
two ways. You can bug outside the menu of most recently used cells, or you can type a <CR> when a

typein is requested,

After the copy is made, YALE assumes that you are going to want to do something with it, so the
previously open cell is closed, and the newly-created cell is opened and displayed in YALE's graphics

viewports.
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This command makes use of a scratch file on the remote host, so you must have a valid user name
and password to use it. A scratch file called "_yale scratch" is created there, and is only used during

the execution of this command. The file can be deleted at any time, although it will be small in
general, and can safely be left there.

6.4 Create Array

This command places a rectangular array of instances of the same symbol. At present, this
command is a bit clumsy to use, but it is easier than putting in the symbols one at a time. When the
command is issued, you are prompted in the tty viewport for the number of symbols to be placed in
the x- and y-directions, and then for the x- and y- displacements. After this information is provided,
you specify the position of the origin of the symbol in the lower left hand corner of the array. Thisis
donein exacﬂy the same way as it is for the simple "Insert Symbol” command, using MBS to insert the
members of the array in their standard orientation, and MB1 to specify a mirroring or rotation

transformation, or some combination of the two.

When an array of symbols is inserted, all are selected, so that the array can be moved or deleted as

a block if some error in spacing or placement was made.

If such an error is made, it is a good idea to correct it immediately, since The inserted array is not
consicered internally by YALE to be an array, but rather a series of individual symbol calls. Thus
individual symbols in the array can be moved or deleted after the array is put in.

6.5 Create Reference Point

This command makes a new reference pcint. Reference points have a tree-like dependence, where
the x- and y-origins serve as the the roots of the two reference point trees. When a reference point is
moved, not only is all the geometry associated with it moved rigidly, but also all reference points that
are relative 1o it. Thus, when a new reference point is inserted, it is placed relative to another

reference point (which may be an origin).

After this command is issued, you are first prompted for the "parent" reference point (which is
identified by bugging it with a mouse click). After this, its screen position is identified in the same
way, and finally, the textual name for the new reference point must be typed in.
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7. Setting Defaults

YALE has a few default values that can be set by the user that affect the actions of some of the
editing and viewing commands. One of these, the default layer selected, has been described earlier.
Every time an "Add rectangle"” command is issued, the rectangle is made of material from the
selected layer 70 select a layer, simply point to the appropriate stipple sample in the status viewport,
and bug it with a mouse click. The other two default settings are new, and are described in the
sections that follow. All are accessed initially by bugging the "Defaults" entry in the main YALE

menu.

7.1 Setting Default Rectangle Widths .

Each of the layers (metal, polysilicon, etc.) has a default width associated with it. In other words,
when the default layer is set to be metal, and you insert a rectangle, the rectangle will be in metal, its
length will be determined by the placement of the mouse clicks, and its width will be determined by
the default width for the metal layer.

The current default widths for the various layers can be determined by looking at the number

printed under the stipple samples in the status window. They can be changed using this command.

The "Set Default Widths" command is a multi-level pop up menu command. After bugging
“"Defaults” in the main menu and the "Line Widths" entry in the sub-menu, another sub-sub-menu of
layers is presented. When one of these is selected, a fourth menu comes up that has as entries a set
of typical small numbers and a "type in" option. If the width you want is in this menu, bug it, and you
are done. If you need an unusual default width, bug the "type in" menu entry, and type in the number
YOL; want, followed by a <CR>. The change takes place immediately, ancl the information in the status

window will be updated.

7.2 Setting Default Expansion Depths

In a complicated layout, when editing the top level symbol, you may not care about the internal
details of the sub-cells. Filling in all the wires and transistors may even tend to clutter the screen toc

much. Therefore, a method is provided to control the expansion depth when viewing a symbol.

The cell that is currently open is at level zero, as are the rectangles contained within it. The
subcells of the apen cell are, together with their included rectangles, at level 1. The cells and their

rectangles contained within these sub-cells are at level 2, and so on.
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Thus, if the expansion depth is set to zero, only the rectangles in the currently open cell are visible.
Any sub-cells are simply indicated by an outline on the screen enclosing their name. All details of
their interiors are hidden. If the expansion depth is set to 1, the rectangles within these cells are

visible, but not the interiors of their sub-cells, and so on.

When YALE starts up, the expansion depth is set to a very large number (32767), so that essentially
everything is visible,

Changing the expansion depth is much like setting the default rectangle widths, described above.
After bugging "Default”, and "Expansion Depth", you will be presented with a menu containing a set
of small numbers, together with an entry marked "all", as well as the usual "typein" entry. The "all"
entry sets the expansion depth to 32767, and the "typein" entry works just as it did in the "Set Default
Widths" command -- just type in the required depth, followed by a <CR>. This command takes effect
immediately, and the screen is redrawn with the new viewing parameters.

The default expansion depth affects all the YALE graphics viewports. Someday this should be
changed to work on a viewport by viewport basis.
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8. Select, Delete, and Move Commands

8.1 Selection

To move or delete objects in a symbol definition, it is necessary first to identify what those objects
are. This is the purpose of the selection commands. The most commonly used selection command
has already been described, and it selects a new reference point, symbol instance, or set of rectangle
edges. If the selection is a symbol instance or set of rectangle edges; everything previously selected
is first de-selected. If the selected object is a reference point the old selected reference point (with
the same orientation -- vertical or horizontal) is first de-selected.

Add Selection. There can never be more than one reference point in each orientation (vertical or
horiz'ontal) selected, but it is often convenient to select many rectangles and symbol instances at the
same time. This can be done with the "Add selections" entry of the sub-menu gotten from the

"Selection"” entry of the main YALE menu.

After bugging the "Add Selections" entry, the next mouse click is interpreted in the same way as
MBZ2 is interpreted for a straight selection. The only difference is that previously selected items are

not de-selected first.

Since it is comimon to use this command repeatedly to get many things selected at the same time,
the command is repeatable in the same way as was "Create Cell Instance". If "Add Selections” is the
current repeatable command, it is easy to use. Simply move the cursor to point to the object to be
selected, and press MB1 and MB2 at the same time. The object pointed to will immediately be added

to the selection list.

Select Ref. Pt. Dependents. The command to "Select Reference Point Dependents” selects all
the rectangle edyes and symbol instances that are dependent on some reference point. Before this
happens, all other selected items are first de-selected. This command is most often used simply to
fingd out what the reference point dependencies are -- that the items are selected is merely a side

effect. The selection is a real one, however, and those items can be moved, deleted, and so on.

After bugging the entry for "Ref. Pt. Dependents", you are asked to bug a reference point, and it is

items relative to this reference point that are selected.
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8.2 Deletion

Dolato Selactions. There are three commands under the "Delete" entry of the maiﬁ YALE pop up
manu. The most important is "Delete Selections”, which does just that -- all completely selgcted
rectangles (those rectangles having all four edges selected) and selected symbol instances are
deleted from the currently open cell. The deletion is permanent -- the deleted items cannot be
retriaved from something like a "yank buffer" that is present in some textual and graphical editors.

The "Delete Selections" command is repeatable, and you can use it to delete a series of objects by
ulternately selecting an object with MB2, and then deleting the object by pressing MB1 and MB2
simultaneously.

Delete Cell Deafinition. The sacond delete command deletes an entire cell definition. This can
only be done if that cell Is called by no other cell in the layout. If this is not the case, an error message

appears in the tty viewport.

Delete Reference Point. Finally, there is a command to delete a referende point. After bugging
the "Reference Point" entry in the sub-menu, you will be asked to identify a reference point by
bugging it. If the reference point has any geometry dependent on it, the deleticn will not be carried
out, and an error message will be presented in the tty viewport. [f this is the case, remember that
there is a command ("Select Reference Point Dependents”, see 8.1) which will show all the

dependent geometry.

8.3 Moving

Move Reterence Point. The main reason for having reference points in YALE is to move them
around to stretch and shrink cell definitions, This is done with the "Move Reference Point"

command.

To do it, first bug the "Move" entry in the main menu, then the “Reference Point" entry in the sub-
menu. Next, identity the reference point to be moved by bugging it, and identify its new location by
bugging the screen. The reference point, together with all associated geometry (symbol instances

and rectangle edges) should be moved rigidly along with it.

Move Selections. This command moves all the selected rectangle edges and cell instances rigidly

to some other position in the cell. The motion references all items to the currentiy selected reference
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point, but the dimensions of the moved objects all remain fixed, even if they were previously

dependent on (placed relative to) two different reference points.

To use this command, bug the "Move" and "Selections"” entry in the main YALE menu and in the
sub-menu, respectively. You will then be asked to show how one point will move (remember that
everything else moves the same way) by bugging its initial and then final positions. A common thing
to do is to bug one corner of a selected rectangle where it is, and then to bug the position to which
that corner should move. If all selected items are thought of as rigidly attached to the first point, the
move command is equivalent to translating that point with everything attached to the second moused

position.

Moving a collection of rectangle edges and cell instances does not de-select them. Thus, if an
error is made, and they are moved to the wrong place, it is easy i «,ive the move command again, and

adjust the position again.

When only one of a rectangle’s edges is selected, and the "Move Selections" command is issued, a
somewhat surprising result can occur if the selected edge is moved so that it winds up on the other
side of the unselected edge from which it was before. YALE simply remembers that, say, "the right
edge is selected", and when what was the right edge becomes the new left edge, YALE still
remembers that the right edge is selected. This situation does not often arise with normal cell

transformations.
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9. Input/Output

The SUN workstations do not have any local permanent storage, so all the data must be read from
and written to remote files. This is done using the ethernet, and the files are available from any other

ethernet host that provides remote file access, and supports the "leaf" protocol.

At the beginning of a YALE editing session, some initialization is done, including the opening of a
connection to such a host, the specification of a user name, password, and of a main file name. After
the initialization, all other input/output is done using the "Input/Output"” entry in the main YALE pop

up menu.

There are three kinds of remote files used by YALE. The first is the main input/output file that
contains the current version of the layout being edited. Generally, this file is opened during
initialization, is read then, and is written at the end of the YALE editing session. There is oniy one

main input file used during a YALE session.

The second kind of file is the backup file. Whenever you give the "Backup" input/output
command, this backup file is over-written with the current contents of the YALE memory. The

previous backup version is lost. There is only one backup file used during a YALE session.

Finally, YALE supports (in a primitive way) library files. A library of cell definitions can be read in
and combined with the user-defined cell definitions. Once they are combined, a copy is permanently
kept in the user's layout file. Because of this, the best way to implement libraries is probably as small
files, each containing only one or two library symbols. YALE has no restrictions on how many library

files may be read in.

¢

Of the three file types mentioned above, the library files are opened in a read-only mode, and the
other two are opened in read-write mode. Errors may occur if the user you logged in as does not have

the appropriate access to the files in question.

In general, the input/output structure could be improved a lot. There are, however, enough
commands to do almost anything, albeit somewhat clumsily. Some of the detects can be remedied by
going in with your favorite text editor and modifying the SILT files on the machine providing remote

file storage.



9.1 Initialization

When you begin a YALE session, some initialization must be done. You will be asked for
information about the main SILT file to be used for input and output. To find this out, YALE must
connect to a host, log you in, and read the appropriate file. You will be prompted in the tty viewporf
(initially at the bottom of the screen) for a host (CCR> gives Shasta), a user name and password, and
finally a file name. Type each of these followed by a <CR>. After this, you may issue any of the
standard YALE commands.

If the file whose name you give in resbonse to the request for the main file name does not exist,
YALE assumes that you wish to create a new file by this name, and does so.

If you give a null file name (i. e. just type <CR>), YALE will not try to open a remote file. Thus, if you
can experiment with YALE even if you do not have an account on a machine with an active leaf
server. Just type <CR) in response to the user name and password requests. obviously, if you do
this, you will have an empty layout, and will have to create everything from scratch. If you do this, and
then decide that you really want to save your edits, you can always re-initialize the connection -- see

the next paragraph.

The initialization commands are also available within an editing session as the menu entry

"Initialize”, found under the "input/Qutput" entry in the main YALE pop up menu.

9.2 Close Connection

This command closes the currently open leaf connection,

9.3 Read Library

When this command is issued, you are asked for the name of a SILT library file, and that file is
opened, and all the cell definitions contained therein are added to those in your layout.

9.4 User Name .

r

The "User Name" command sends the remote system a new user name/password combination. At
any point, YALE only keeps track of one such combination, so if you use this command to read in a
library file, ycu had better use it again to connect back to the main directory if you wish to write out

your main file alter editing.
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9.5 Write

The "Write" command writes out the contents of memory into the main file. If you have not yet
specified it, you will be asked for the name of the main symbol {6 be used. The symbol name you
select is added to the end of the SILT file produced so that it is the symbol expanded to create the
whole iayout. For example, if you select "foo" as your main symbol, a line of the form:

place foo() at (0, 0);

is put in as the only symbol call in the main begin-end block of the SILT file.

The reason that the main symbo! name is requested during each YALE session instead of inferring
it from the input file is that in this way it is possible to change it. YALE should be changed so that it is
usually inferred, but can be changed with a specific "Default” or "Input/Output" command.

9.6 Write Backup

The "Write Backup" command is exactly like the "Write" command above, except that the
information is written onto a backup file instead of the main YALE output file. The first time this
command is issued, you will be asked for the name of the output file, and if you have not yet specified
it, the name of the master symbol. After this information has been provided once, you will never be
asked for it again during that session.
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10. Miscellaneous YALE commands

Although the chapter is entitled "Miscellaneous YALE commands", this does not mean that they
are not important. In fact, the commands documented here tend to be extremely important. All are

accessed via only a single level of pop up menu.

10.1 Expand Cell

At any point in a YALE editing session, exactly one cell is open for editing. The "Expand Cel"
command opens this cell. You show which cell is to be opened using the most-recently-used pop up
menu mechanism. When a ceil name is selected or typed in, the old cell is closed, and the new cell is
presented in all the YALE graphics viewports. Everything in the cell (except, of course, for the vertical

and horizontal origin reference points) is de-selected.

10.2 Re-reference

As each rectangle or symbol instance is added to an open cell, it is placed relative to the currently
selected horizontal and vertical reference points. For rectangles, both edges are so placed, so
without this command, there would be no way to make stretchable rectangles. The other common
use for this command is when it is desired to make a cell flexible in some position where it was
previously rigid. For example, suppose that it is desired to make a cell that was originally totally rigid
so that it is stretchable in the x-direction. To do this, simply add a vertical reference point, and re-
reference the items generally to the right to this new reference point. Move the new reference poin_t
around a little to see if all the stretching is done correctly, and then do seme more re-referencing to

correct errors.

The "Re-reference” command deals with the currently selected items, and leaves them in place,
but re-references them to a new reference point that is identified by bugging it. It is effectively exactly
the same as selecting the new reference point, and then "moving" all selected items by a distance of

zero.

10.3 Window Manager

This command is available to allow an easy transition to the window manager from within YALE
without requiring the user to take his hands of the mouse. [t is exactly equivalent to typing the “brain

escape character”.
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10.4 Show Cell Definition Names

This command displays a complete list of all the cell definitions currently in the layout. The names
of the celi definitions are printed in the tty viewport, six to a line. The initial size of the tty viewport is
small, and if there are many names, or if there are long names, they will not all fit in the viewport.
Remember, however, that the tty viewport is like any other viewport on the display, and its size and
shape can be modified with commands to the window manager. Just because the lines of text are not
visible does not mean that they are not there. |

10.5 Quit

The "Quit" command exits from YALE. It closes all open files on the remote machine, and closes
the connection. The user is then returned to the SUN monitor. No warning is given if the edits have
not been saved. In almost all cases, the next-to-last command is to write out the main file (see the

next chapter).

The "Quit" command must be confirmed with a "y(CR>" (or a "YXCR>"). To abort the "Quit"
command, simply type anything else -- a raw <CR>, "n{CR>", or anything else. The editing session

will then continue as if nothing has happened.



11.Errors

11.1 The %’ Command

If YALE (or any other user process running with the window manager) gets totally hung for some
reason, there is an emergency abort that almost always works. Simply type the percent character,
and everything should halt, returning you to the SUN monitor. This is a last-ditch attempt, and
everything about the editing session is lost (except, of course, for any backup files that were written).

it works because there is a separate process watching the keyboard input, and even if some other
process is stuck in a loop, the keyboard process still gets run regularly.

Use this command instead of the usual break command, since this one shuts up the mouse. (On
some of the SUN monitors, the mouse is turned on by sending a command to the keyboard, and it
continues to transmit its coordinates until it is turned off. The break key does not turn off the mouse,
and the terminal is left in a useless state until the keyboard is unplugged or the terminal is powered

down.)

11.2 SILT Parsing Errors

If alt your editing is done using YALE, you should never have any trouble with this. On the other
hand, if you go in with an editor and edit the SILT files produced by YALE by hand, it is not too hard to
introduce syntax errors. YALE tries to read the file containing errors as best it can, and to continue
after the error(s), but it will obviously sometimes be unsuccessful. There are many messages related
to SILT syntax errors, and they should be self-explanatory. All such errors will be written in the tty

viewport.

If such errors occur, the best bet is to go back to the original files and edit them until the errors go

away.

11.3 Running out of space

No matter how much storage is available, it is possible to make a layout that is too big for it. Since
YALE can run out of storage at totaily unpredictable times, it is impossible to predict what the
consequences are. Some of the storage is not efficiently reclaimed, and thus after editing for a long
time, you may run out of space even though the layout has not gotten much mbre complicated.
Writing out the file, restarting YALE, and reading in the file again can sometimes help.
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Some mechanism should be created in YALE to cache data on the remote host, but this has not yet

been done.

If the layout is just too big to deal with, YALE can be used to put together parts of it, and all the
parts can be combined by hand using SILT to wire together the pieces. The SILT translator, running
on the VAX, can handle very large layouts.,

A warning about low free storage is hard to give, since a single YALE command can use up a large
amount of it. For example, creating a large array of symbol instances can chew up free storage in a
hurry. When free storage is exhausted, the message "Out of free storage" is put up in the tty
viewport, and YALE attempts to leave its data structures in a reasonable state, but this is not always
possible. The best advice is to back up your work frequently when you think that you may be low on

free storage.

11.4 Other Size Limitations

YALE has no absolute cell size -- a symbo! can call as many rectangles as it wants. There is an
implementation restriction on the number of symbol calls that a given symbol can make. A single cell
must contain less than 300 symbol calls, but it is not as simple as that. If symbols are deeply nested,
this number can be reduced. If, during an "Expand Symbol" command, the error "Too many symbol
calls" occurs, try reducing the number of symbol calls in symbols with a large number of them.

Another scarce resource is something called “"Sun instance Numbers". The number of these is a
compiled-in constant, so can be changed by re-compiling. Each cell definition, cell instance,
reference point, and rectangle has a Sun Instance Number. When an object is deleted, its Sun
Instance Number is returned to a pool of free numbers. Sun Instance Numbers are used to look up
quickly information about items displayed on the screen.

11.5 Bugs

Some of the error messages are prefixed by the word "bug". These should never be printed out. If
one is, please report it to the YALE maintainer, together with as much information about what was

going on as possible.

Reports of other bugs are also welcome.
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This is a list of all the commands available in the window manager. Each command is foliowed by

. Window Manager Command Outline

the page number on which it is more fully described.

Zoom In (MB1) 8
Zoom Qut (MB2) 8

Brain Escape Character 10
Center Window 9

Create Viewport 8

Delete Viewport 9

Move Edge 9

Move Viewport 9

Redraw 10

Return to Yale 10

Toggle Grid 10

% (emergency abort command) 35
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Il. YALE Editor Commands

This is a list of all the commands available in the YALE layout editor. Each command is followed by
the page number on which it is more fully described. Those commands followed by an asterisk (*) are
repeatable.

Add Rectangle (MB1) 17
Select Item (MB2) 17

Create Array (of instances) 21
Create Cell Iastance (*) 19
Create Cell Definition 19

Create Copy of Cell Definition 20
Create Reference Point 21

Defaulit: Set Default Width 23
Default Expansion Depth 23

Delete Cell Definition 26

Delete Reference Point 26

Delete Selections (*) 26

Expand Cell 33

Input/Output: Initialize 30

Input/Qutput: Close Connection 30
. Input/Output: Read Library 30

Input/Output: User Name 30

Input/Output: Write 31

Input/Qutput: Write Backup 31

Move Reference Point 26
Move Selections 26

Re-reference Selections 33

Select: Add (to) Selections (*) 26
Select Reference Point Dependents 25

Show Cell Definition Names 34
Quit 34

Window Manager 33
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The Compilation of Regular Expressions
into Integrated Circuits

ROBERT W. FLOYD AND JEFFREY D. ULLMAN

Stanford University, Stanford, California

Abstract. The design of integrated circuits to implement arbitrary regular ekpressions is considered. In
general, a regular expression with n operands may be converted into a nondeterministic finite automaton
with at most n states and » transitions. Instead of converting the nondeterministic device to a deterministic
one, two ways of implementing the nondeterministic device directly are proposed. One approach is to
produce a PLA (programmable logic array) of approximate dimensions n rows and 2n columns by
representing the states of the nondeterministic finite automnaton directly by columns. This approach, while
theoretically suboptimal, makes use of carefuily developed technology and, because of the care with which
PLA implementation has been done, may be the preferred technique in many real situations. Another
approach is to use the hierarchical structure of the automaton produced from the regular expression by
the McNaughton~Yamada algorithm to guide a hierarchical layout of the circuit. This method produces
a circuit O(vn) on a side and is, to within a constant factor; thc best that can be done in general.

Categories and Subject Descriptors: B.1.2 [Control Structures and Microprogramming]: Control Structure
Performance Analysis and Design Aids—automatic synthesis, formal models; B.7.2 [Integrated Circuits]:
Design Aids—Ilayout; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms
and Problems—routing and layout; F.4.3 [Mathematical Logic and Formal Languages]: Formal Lan-
guages—classes defined by grammars or automata

General Terms: Algorithms, Design, Languages, Theory

Additional Key Words and Phrases: Regular expression, nondeterministic finite automaton, programmable
logic array, circuit area

1. Introduction

There are a number of projects, such as [4, 6, 13], whose goal is “silicon compilation,”
that is, the automatic layout of circuits from their behavioral description. These
projects tend to be oriented around the design of computerlike circuits, certainly an
important goal, but one that is analogous, in the software domain, to implementing
languages suitable for writing operating systems, but little else. It appears that the
“FORTRAN?” of circuit implementation must be quite general-purpose, allowing us
to specify a great variety of different kinds of circuits and to mplement anythmg we
can spemfy, with a fair degree of eﬁicxency SRTRE T -
.. It is the purpose of this paper to discuss only one possxble component of such a
gcneral-purgosc language, a regular expression facility. Regular expressions are .
capablc of speafymg any ﬁmtc-state process, although they are not always as succmct

J

Thxs work was supported in part by DARPA Contract MDA903 80-C-0102 and in pan by the Natlonal
Science Foundation under Grant MCS 79-04528, - ... ‘.. .Tode. :

Authory’ address: Computer Science Department, Stanford Univer< "y, Stanford, cA 94305, 0 7
Permission to dbpy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copynght notice and the title of the publication
and its date appear, and notice is given that copymg is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requu‘es a fee and/or specific permission. S~
© 1982 ACM 0004-5411/82/0700-0603 $00.75 ST o

Journal of the Association for Computing Machinery, V_ol. 29, No. 3, July 1982, pp. 603~622.
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as other representations [3]. Fortunately, there is a common class of finite-state
processes for which regular expressions zppear very well suited indeed. In the
software world, lexical analyzers, which recognize the tokens (e.g., identifiers, key-
words) of a programming language, have been generated automatically from regular
expressions defining the tokens. Regular expressions also make a good language for
describing patterns to be matched by a text editor. Aho and Ullman [1] describe
these and other software applications of regular expressions.

In the hardware world, regular expressions may be suited to describing certain
controllerlike processes, where it is desired that we signal “events,” where each
“event” consists of a sequence of significant input signals, perhaps interspersed with
arbitrary numbers of irrelevant signals. We shall later give a design example for a
simple device of this sort. On the other hand, regular expressions are not very good
for describing counting processes. For example, the event “876 zeros” is most
naturally described by the regular expression 00. - .0 (876 times). Obvious techniques
for producing a circuit from this expression will only succeed in producing a unary
counter with 876 distinct memory elements, rather than a binary counter with ten
memory elements. Extensions to the regular expression language can alleviate this
problem somewhat, but the fact remains that regular expressions cannot be billed as
a panacea, even if we restrict our domain of interest to sequential processes. However,
they do represent a promising approach to the-automatic design of some components,
and they probably “-ave a place in any general-purpose compiled circuit design
language.

2. 7"he Circuit Model

To be specific, let us assume that circuits are implemented in the nMOS technology,
using the Mead-Conway [11] design rules. However, what we say applies to any
technology in which

(1) 2-input logical operations can be implemented in constant space;

(2) wires have a fixed constant width, and signals can be driven through the wire in
an acceptably short time by a driver no larger than the wire itself;

(3) there is a particular number of wires, at least two, that may occupy the same
area; the number 3 applies to the nMOS technology

This model of integrated circuits is discussed in [2, 14], for example.

3. Regular Expresszons and Nondetermtmsnc Automata

We assume ihe reader is famlhar with finite automata theory as discussed in [5], for
example, and we only sketch the essential details here. Regular expressions are built
from an alphabet X (in practice, T mlght be the set of ASCII characters, for example)
usmg the (ollowmg rules.” 7 e e

AT B N Ty e

(l) Foreach ain %, a is a rcgular expressmn denotmg {a} that i is, the set con51stmg

‘of one string; that string is of one symbol, a. CoL e
(2) @ and € are regular expressions denoting, respecuvely, the null set and {e} that
is, the set consisting of the empty string (zero-length string) only. . R

(3) If R, akd R; are regular expressions denoting sets of strings S; and Sz, respectnvely,

‘then (Ry) + (Rz), (R1)(Rz2), and (R;)* denote S; U S3, S1.52, and Sr, respectxvely
Here S$: S, is the concatenattan ‘of sets S; and Sz, that is,

(YIXESIAYES). o n e T
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Also, ST, the closure of S, is
{E} U Sl U S]S) U S.S;Sl (WA

That is, (R)* means “zero or more occurrences of R.”

(4) Parentheses may be dropped when they are implied by the following precedence
order: closure highest, then concatenation, then union. For example, a + bc* is
grouped a + (b(c*)) and stands for the set of strings

{a, b, be, bee, bece, ...}

Sometimes it is useful to extend the regular expression language in several ways
that do not affect the collection of sets of strings we can define. For example, LEX
[8], the UNIX lexical analyzer generator, uses . to stand for “any character,” that is,
the expression a; + a; + - - - + a., where the a's are all the symbols in 3. Also, (R)"
stands for the positive closure of R, thatis, R + RR + RRR + .- ., or “one¢ or more
occurrences of R.” The expression (R)? means “zero or one occurrence of R,” that is,
€+ R

A nondeterministic finite automaton (NFA) is conventionally represented by a
directed graph, whose nodes are states, and an arc from state p to state g can be
labeled by any symbol from Z or by ¢, the empty string. We allow multiple arcs
between two states, but we usually represent these arcs by a single arc with more
than one label. One state is designated the start state, and one or more states are
designated accepting or final states. The NFA accepts a string a,a; - - - a, if there is
a path from the start state to some accepting state, and the labels of the arcs along
that path read a;a; -+ - a.. Note that € may be a label of one or more of those arcs,
but ¢ is “invisible,” that is, it can appear any number of tlmes along the path without
appearing in the string accepted. .

Example 1. Let us now take an example of how a sequential process can be
represented by regular expressions and by an NFA. Consider a control unit that
receives a sequence of two bits, which it interprets as a command according to the
code

00 = add,
01 = subtract,
10 = load,

11 = load complement.

- For simplicity, we assume that the source of commands is “well behaved”; we never
receive anything but two bits at consecutive times, nor can a second command be
* received while the previous command is being processed. S

The output consists of three lines, 4, C, and L, which, respectively, cause (A) add

the memony buffer to some particular register, (C) complement the memory buffer,
and (L) load the memory buffer into the register. When the C signal is sent, the
controller waits for a completion input signal (X) before sending the 4 or L signal.
. As the machine is synchronous, we actually have a fourth input symbol besides 0, 1,
and X i in our alphabet Z. We use N to mdrcate that no command brt or completron

srgnal is ‘prgsent on the input. - el :

_As an aside, we note that the mput alphabet = {O 1, X N } should be regarded.

as consisting of logical, father than physrcal, inputs. For example, in practrce there
might be three binary input lines: “command bit,” “command present indicator,”

and “completion.”. The 0_input is represented by a command bit of 0, with the -

R A T
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p—

Command present 0 0

Command bit 0000
1
Fig. | Actual-to-logical input interpretation. Completion 010 1

o -

1
0
1

S - -

Logicalinput N X 0 0 N X | |

®

1 X
(b0 A output
Start 9( ‘
@ ! (@ C output FiG. 2. An NFA fpr the controller example.
O, 1,N, X )
———07@ L output
1 X

®
)

command-present bit set to 1. The completion bit can be ignored, as a | on that line

while the command is present viclates our assumption that commands do not overiap.

The interpretation of the three bits as input symbols from X is shown in Figure 1.
The regular expression for the “add” output signal is given by

. A= 00 + IN*X),

where . stands for “any input symbol.” That is, we wish to signal an addition if after
any sequence of inputs we see a 0 followed immediately by either

(1) another 0, completing the command 00 = add, or |,

(2) a1, completing the command 01 = subtract, followed by any number of N’s and
an X. In this case, we assume the “complement buffer” signal C is sent after
receiving 01. The N’s represent “clock ticks” while we wait for the completion
signal. When the X is received, we know the buffer has been complemented and
immediately issue the “add” signal.

Similarly, we can specify the conditions under which we should emit the C and L
' signals by : ‘

c—- 2O+ D,
= *1(0 + IN*X).

We shall subscquently discuss an algorithm to convert any regular expression to
an NFA with some arcs labeled e. However, we first illustrate the NFA concept with
one NFA for the controller; this NFA, shown mFigum Z,m;csna e-arcs, but it does
have nondetermmnsm, in the sense that it can be in more than one state at the same
time.! For examplc, suppose we have input NO1. We begin in state g, the start state.
The only arc with label N leaving state a leads back to a. Thus, after the first input
symbol we are only in state a. The next input, 0, labels arcs from a to a and b, so
after the second input we are in those two states. Then we look for arcs out of a or
b labeled 1" and we find them fromatoa ‘and ¢, and from bto'd and ; 8. Thus, after
the third Aput we are in g, ¢, d, and g. Since g is a final state, we “accept” NOL. In
practice, state g represents the C signal, which is appropnatc, since our input is one
instance of the “subtract” command. O . LT~

e

tation in hardware is quite different from that of its deterministic counterpart (a DFA), which is guaranteed
to be in only one state at a time.

' Nondeterminism should not disturb us here. The NFA is a mathematical abstraction, and its implemen--
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Fia. 3. Parse tree for .00 + IN*X),

(d) (¢

(9]

Fia. 4. The McNaughton-Yamada constructions for (a) ¢, (b)@, () a in Z, (d) union,
(¢) concatenation, and (f) closure.

4. The McNaughton—Yamada Construction

There is a well-known recursive algorithm, due to McNaughton and Yamada, for
converting regular expressnons to NFAs with some e-arcs. The algonthm produces
NFAs for the regular expressions (Ri) + (Rz), (R1)(R3), and (R1)*, gnven NFAs for R,
and R;. To begin, we must “parse” a regular expression. That is, we view the regular
expression as a parse tree, where leaves represent symbols in T (or € or G if needed),
and interior nodes represent the application of union; concatenation, and closure
operators to subcxpressnons For example, the parse tree for expression 4 of Example

I is shown in Figure 3. See (1] for a dcscnptton of how parsc trees for regular__. S

it Iy

exprcssnons can be constructed.

“The McNaughton-Yamada algonthm (5, 10] constructs for any regular cxpressnon
an NFA with one start state and one final state. It is conventional to draw NFAs
with the start state on the left and the final state on the nght Figure 4a—c shows the
basis of the construction, the two-state NFAs that recognize ¢, &, and any particular
a in T, respectively. thure 4d—f shows how NFAs M, and M for regular expressions

Ri and R, are combined to get NFAs for (R,) + (Rz), (R1)(Rz), and {R))*. Simple

modifications of construction (f) give us the posmve closure (*) and zero-or-one (?)
operators. In the first case, eliminate the e-arc from the new start state to the new’

final state, and in the ucqnd case, chmmate the backward arc. . .
. ’"‘t _,,x . {, et e

Example 2. "The NFA constructed from the expression 4 = ,*0(0 + IN*X ) is
shown in Figure 5. There, and henceforth, we adopt the convention that final states

- .
at
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F1a. 5. NFA for expression A.

F16. 6. Combining several NFAs into one. Start

A8 °

are indicated by double circles. Note the great superfluity of e-arcs. Many of these
can’be eliminated by considering special cases in the recursive construction rules.
They can all be eliminated by replacing an e-arc from state p to state ¢ by arcs from
p to whatever states ¢’s arcs go to, and then, if g is final, making p final. Then we
may eliminate g if it js not the start state and it no longer has any entering arcs. See
[1] for details. O3

There is one more step to the construction of an NFA from a collection of regular
expressions. We introduce a new start state with e-arcs to the start states of the NFAs
for all the regular expressions in the collection. This construction is illustrated in
Figure 6. Note, however, that the various final states of the combined NFA are not
" indistinguishable. Each represents one of the output signals for the device. In a sense,

the NFA of Figure 6 represents an extension to the usual concept of an NFA, since

there are dlffcrmg output mgnals assoclated wnth the dlfferent ﬁnal states

R T

5. APLA ImpIementanon ofNFAs B ‘;

Aoy Tey v ey aaTer S P O Y LRI ,,.v,,u, .

The programmable logxc array (PLA) has bcen used as a systematxc mplementatton

of deterministic finite automata (see [11], e.g.). In these implementations the states

are binaryycoded, and the bits representmg the new state are computcd from the bits

of the old state ‘and the current inputs. " a [P S TN 46
‘While we shall not attempt to describe the mcchamcs of PLAs in detail here, a

rough idea of how they work can be obtained by looking ahead to Figure 7. There

we 'sec a typncal PLA, which is a two—dunensnonal .array of wu'es, dwxded vertncally_.
into an and-plane and an or-plane. Certain signals (labeled state b, ..., state ¢ in
Figure 7) are fed back from the or-plane to the and-plane, with an implied delay of
one time unit. New values of the feedback signals and output sxgnals (L,C,and 4 in
Figure 7) are computed in the followmg manner. Imagine signals wnth\V{luc 1

originating at the left end of each horizontal wire. In order for that signal to cross the
and-plane, all thc vcmcal wires that it mtersects at a dot must have value 1. lf the

f:"’;. - i (R E I Y R Loree e g ‘.'_;.:‘. PN IR v Lt -[n'
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and :p\lane l or-Bl:ne
REERNIEEE 1“
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{4 A 117
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———— | s Y Y —
inputs state ¢ outputs
(states
' state d f,gand h)
' state ¢

F1a. 7. PLA for machine of Figure 2.

signal reaches the right end of the and-plane, it enters the or-plane and makes 1
every vertical line it intersects at a dot. For example, in Figure 7, if the fourth and
fifth vertical wires (X input and state €) are 1, the top wire will have its signal reach
the or-plane and turn on the L output. :

An alternative use of PLAs is to use one bit for each state of an NFA. We shall

. assume that the NFA has no e-arcs, although that restriction is not essential if we

aliow states to be fed back from the or- to and-plane without any delay. For each arc
of the NFA, labeled a and entering state q from state p, we create a term in the
formula that tells whether g is one of the states in which the NFA is currently found.?
This term is ap; that is, the term has the value true if and only if the input is a and
state p was previously on. State ¢ will be on at the next clock tick if and only if one

of its terms has the .value true, that is, there ns some arc labeled a to q from a

previously ¢ on state. _

We may-conclude from ‘the above remarks that the number of rows of the PLA
each of which corresponds to a term in the formula for one or more states, is no
greater than the number of arcs in the NFA.’ The number of columns in the PLA is
twice the number of states (for the next and prevnous versions of each state) plus the

number of i input bits and their complements 1fneeded At st & s EER

"Example 3. Let us implement the NFA of Figure 2 as a PLA We begm by )
noticing that there are elght states, 0 in- prmcxple we need sixteen oolumns for the

e H T L T

P

IWe shall say a state is on when the NFA is in that state. - \ -
% Recall that, technically, an aic with sevml labels is shorthand for a set of m each wuh one label and
the same source and destination, A L L I
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inputs state code
01 X NJAC L S S S
ajbca alO OO0 ' O O
b(d ¢ a a0 00 0 0 O
¢cjd ¢ a aJO O O 0O O 1
Fig. 8. DFA from Figure 2 and one possible : ‘: ; : .i (‘) ? g 8
state encoding, tle ¢ s aloo 1 o
9|t 9 j x]O 1t O 1
hfb ¢ a ajt O O 1
bbb ¢ b 1,40 00 O 1 0
J | ¢ a a]JO O 1t 1
kfb ¢ | «]O O 0O 0 1 1

next and previous states. The inputs are coded by three bits, so we might assume we
need six more columns. However, let us assume that the inputs are decoded into the
four logical signals 0, 1, N, and X, by the table in Figure 1. We thus need a total of
20 columns. Furthermore, if we sum the numbers of labels on each of the arcs in
Figure 2, we see that we apparently need 16 rows. However, we can do considerably
better than this if we observe the following.

(1) States f; g, and k have no arcs out, and therefore their values need not be fed
back, as those values are not used in the terms for any states. However, we must
.compute values for these states because they are final states. This arrangement
saves three columns.

(2) State a is always on. Therefore, it need not be computed, and terms involving
state g can use “true” in its place. This saves four rows and two columns,

(3) The transitions from b to d and g on input 1 require only cne row, since the
conditions are the same. Similarly, the two transitions from ¢ on input 1 require
only one row. Thus two additional rows can be saved.

The resulting PLA has 15 rows and 10 columns. It is shown in Fxgure 7, whcrc
circles represent connections. . [ S

It is mterestmg to compare Figure 7 with the conventional PLA implementation
of machines. If we convert the NFA of Flgure 2 to a minimum-state DFA, we find
the latter has 11 states. By way of comparison, we chose a particular encoding for
states of this DFA. The encoding included the 4, C, and L output bits and three
other bits (the minimum necessary, since: five of the states have 4 = C == L = 0). The
state transition table and ‘the encoding dre shown in anure 8. Blanks in the state
code entries indicate that either 0 or 1 may be used, that is, states with blank 5 and
83 entnes have four alternative encodmgs and we can use the most convement one
when one 8f these states is the next state, "~ T 7 S b e

Obvxously, we could use only four bits to encode states, but then we would have
to compute the' output bits anyway, giving back some of the ‘columis we saved by
using shorter codes for the states, and also reqmrmg addxtlonal terms to be’ computed
possnbly increasing the number of rows required. " R e i gl TG

~iWhile wle cannot be sure we have a minimum-row PLA, even after restricting
oursclvcs to the state encoding of anurc 8,-a careful selection of terms sufficient to
compute the six state bits resulted in a 22 X 26 PLA That is, there were 26 terms

. e

utﬁ.n -

* Note that the states in Figure 8 represent subsets of tﬂc states in. annre 2, and thcre is no ncmury
relatnomlnp between states of the same name in the two figures. T T
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required, and the 22 columns consist of 6 for the next state, 12 for the previous state
bits and their complements,’ and 4 for the input bits.

The produci of the dimensions for the conventional PLA implementation is about
four times what it is for the NFA-based implementation. The inclusion of space
around the peripheries of the two PLAs for drivers and clocking gates will reduce the
4: | ratio somewhat, but there is still a clear advantage for the NFA approach to this
design problem.*

We do not wish to generalize the results of one example to all sequential machine
designs. Our method will be advantageous only when the problem at hand lends
itself to a succinct description by regular exprcssxons For cxample, our methods do

not work well on the traffic hght example in [11], because that controller embodies
a modulo four counter, and regular expressions are not convenient for expressing
counts.

Let us summarize this section by formalizing the relationship between the size of
regular expressions and the size of PL As needed to implement them.

THEOREM 1. For every collection of regular expressions consisting of a total of
n operands, and with € not in the laxguage of any expression,” over an alphabet of at
most 2% symbols (i.e., ip bits are used to encode inputs), there is a PLA signal-
ing the recognition of each of these expressions, this PLA has at most 2n rows and
2(n + iy + 1) columns.

Proor. First, let us assume there is but a single regular expression; the construc-
tion for multiple expressions will be clear from our discussion of single expressions.
Begin by converting the expression to a nondeterministic finite automaton with €
transitions, using the McNaughton-Yamada construction of Figure 4. Observe from
that construction that there will be exactly n states with transitions out that are
labeled other than e. These are exactly the states on the left of Figure 4c that were
introduced by the n uses of that part of the construction. Call these n states, along
with the initial and final states, distinguished.

Eliminate e-arcs by computing for each distinguished state the set of distinguished
states that it can reach along paths with exactly one non-e-arc and any number of
e-arcs. Replace the existing arcs by an arc labeled a from distinguished state p to
distinguished state ¢ whenever.there is such a path labeled a from p to q. By the
definition of distinguished state and the fact that € is not in the language of the
expression (and therefore there is no e-labeled path from initial to final state), the
new NFA is equivaient to the old, and surely the new has no e-arcs.

Our PLA will have 2i; columns for the input bits and their complements. It has a
column in the and- plane for the initizl state, a column in the or-plane for the final
state, and columns in both planes Tor the other distinguished states. Since there are
n other d1stmgunshed states, 2(n + 1) columns are needed for states and there are a'
total of 2(n + zo + l) columns

.. -

BT TR

» Note that thc PLA 1mplementauon of nondclcrmmlsuc finite automata never reqmrzs the complemcms
of state bits,  ~ "

% One of the referces, and also M. Foster and H.-T. Kung, pointed.out that in pnncxple, since the PLA
represents a d¢terministic.-finite automaton equivalent to the original nondeterministic finite autematon,
it is never possible for the NFA approach to be superior to the conventional method. We believe, however,
that the issue is not only the size of the theoretically optimal PLA, but the ease of finding such a PLA. It
is doubtful that going from a DFA to a state cncodmg that reflects the underlying NFA is an easy problem.

"* Qtnctly spcakmg, no PLA can recognize ¢, since there is a clock tick that must elapse between ﬁ‘mput_
and .. =~ .o Heevever, a simple modification would allow direct (unclocked) eonnecuons from input

and outpu” ve...ot through the PLA or around it.
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The rows correspond to transitions in the new NFA. For each distinguished state
p other than the initial and final states, we need one row that is turned on whenever
p is on (i.e,, the NFA is in state p, among others), and the input symbol is that for
which p has transitions out. In the or-plane, this row turns on columns for the states
reachable from p by the arcs labeled with that symbol. In this manner we create n
rows.

We also need rows for each symbol labeling one or more transitions out of the
initial state. These rows are turned on when the initial state wire is on and the input
wires represeming that symbol are on. It is easy to see that the number of such
symbols is no greater than n, since each transition out of the initial state must
correspond to a non-e transition of the original NFA. All transitions are either from
the initial state or from a distinguished state that is neither initial nor final. Hence,
all transitions are implemented by the above rows, and thus a total of at most 2n
rows are needed in our PLA. [

As a consequence of Theorem 1, for fixed input alphabet Z, we can implement
regular expressions of length n in O(n?) area. However, in practical examples it is
common for an n-state NFA to be converted to a DFA with roughly n states. For
example, the 8-state NFA of Example | becomes an 11-state DFA. If that is the case,
then an n-state NFA might be implemented by an O(log #) X O(n) PLA. The DFA-
based implementation of machines would be superior, but, as mentioned, it is not
necessanly easy to find the best PLA for a DFA. Surprisingly, we shall see in the
next section that there is a totally different approach to the im lementatxon ol regular
expressions that yields a circuit of dimensions O(Vn) x O(vn

6. A Hierarchical Implementation of Regular Expressions

An inspection of Figure 4, which shows how to construct an NFA from a regular
expression, suggests that we could lay out a circuit directly on a chip, if we represent
states of the NFA by appropriate logical elements, represent e-arcs by wires, and
represents arcs labeled by input symbols by wires with gates checking for that symbol.
This approach was suggested in [12], for example. The states used in Figure 4 can be
divided into two classes: ‘

(1) those that have e-arcs out, and L

(2) those that do not, that is, they are ﬁnal states or have arcs leavmg that are labeled -

- by an input symbol. - . T L U

States in the second group are implemented by Iatéhes;'t'ﬁ'at: is, pairs df fnvértéré
connected in a loop, with one clock phase to control the output of each. Those in the
first group are really nothmg more than )unctlon pomts in the circuit, allowmg two

signals to merge (through an or-gate) or one signal to fan out. into two identical

signals (o logic at all is needed here). . R

When building large circuits from smaller ones, it helps xf we view each circuit as’
a rectangle, as suggested in Figure 9. Power is supplied at the upper left and passed
to the right if needed by a circuit to the nght Ground drains at thc lower nght, and
ground from circuits to the left is passed in at the left if necessary,” Two phases of 2/

clock andithe bits needed to represent an input symbol are passed in at the leftand

will pass out at the right if needed to supply a circuit to the right.: *+ -

" There is a signal called state-in that, if it is 1, turns the start state of the circuit on'

at phase one of the clock. An output s:gnal called state-out, is turned on at-clock

® Viewing power and ground this way cnables us to avold crossmg them, whnch is gcnerally not fcwblc m_

integrated circuits. o .
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pOWer in ——mf --w power, if needed to right
clock in ——n- }---» clock, if needed to right
inputs in —= ---a input, if needed to right
state in «—m = State-out
ground from
nLeefc;e'c; - —= ground out

FiG. 9. Format of a circuit implementing a regular expression.

L4

power ——m h—~m-powWer
ClOCk b=~ clock
iNPULS ~— Feaum-inputs
rate-in ’ state-out state -out
sta state-in
ground ~=-a- p——=ground
(a)
power —m———gsad 000 heea- »power
clock b e e = CLOC K
inputs -~ minputs
\ state~-in «— state-in et stat @ - ou t
. [ 1 ground
b - N ,
L lIstate-out
ground —-—m - m—a » o ground

(b

Fi1g. 10. Circuit connections. (a) Horizontal connections. (b) Vertical connections.

phase two if the circuit enters its accepting state. In general, phase one of the clock
is used to decide which states will be on after processing the current input symbol
and to propagate this information through states with e-arcs leaving. Phase two is
used to transfer the decisions made at phase one to the output of the latches that do
not have e-arcs out. P

~Let us suppose we have circuits for regular expressions R, and R, and we wish to
‘construct a circuit for (Rl)(Ra) We can connect the circuits in cascade as suggested _
by Figure 4e; this connection is shown in Figure 10a. Note that the final state of the
first mathine is given an e-arc out. Thus the latch representing it is no longer needed

or appropriate. We must replace it by a junction point oz, if there are several input .
arcs for that state, by an or-gate. As latches can be expected to require more area

than a single gate or junction point, we can make this replacement without worrying
about the geometry of the circuit, and we shall henceforth assume such changes are
made when necessary, not only in the concatenatlon constructlon but in thc umon
and closure constructions as well. - P E

Figure 10b shows an alternative orgamzatxon for the circuit, in Wthh the first

machine is placed above the second. Sumlmly, when we unplementhvumon

construction of Figure 4d, we can choose to place either constituent circuit above the -—

other or place either to the left of the other. The closure construction, since it does
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+ F1g. 11. Straightforward implementation of the McNaughton-Yamada algorithm,

not combine two circuits, gives us litile choice; we must simply augment the circuit
with surrounding feedback and feed-forward wires as suggested by Figure 4f.

The reason we care about the relative positioning of circuits is that we desire each
circuit to have an aspect ratio (ratio of height and width) near one. For example, if
we must combine two circuits that are longer than they are high, we would prefer the
vertical connection of Figure 10b to the horizontal connection of. Figure 10a, since
the former has a squarer shape than. the latter. The reason, in turn, for desiring an
aspect ratio near one is that, on the average, we can couple squarish circuits with less
waste space than we can couple elongated circuits. For example, neither Figure 10a
nor b is very good if one of the constituent circuits is very tall and thin while the
other is short and wide. Another motivation for keeping aspect ratios low is that the
basic circuits, such as latches, cannot be designed in a fixed area with a fixed aspect
ratio if the area ailotted is small and the aspect ratio is high. Thus the rectangles
representing the basis constructions of Figure 4a~c must be allocated space of limited
aspect Tatio. .. .7 s gl s o I e L I TR AL S PR IR COTS T N

Unfortunately, just keeping the aspect ratio within bounds is not sufficient to -
guarantee efficient use of space, for one of two constituent circuits could be signif-

icantly larger than the other. For example, an expression like .= ¢ - ~oi; —— e
ETH TR A (PRSI SR INNNES SV AN SE L0 ¢ LV STRNE A YR R EE NIRRT T (R I LI R SEUE TP S TR
S (“:2((a1 + ar)as + adas + - S )a, , _
s R i SUAL A L IV LINL OO sl W iTa 3 R b SEE i T el

forces us to crgate either a long, thin circuit with many long wires or an L-shaped — -
circuit, if we restrict ourselves to the constructions of Figure 10. As another example,
B (G LMD M S

o. . Sieento S i . . e s DL I
requires n nested feedback loops, so it appears to require O(n?) space no matter what
FLOTE T L tie gLt e L g ST ¢ L . -

o

i B e ! ) 1 O

-~
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we do.” As we shall see, all these problems can be solved, and circuits for these
expressions, taking area that is proportional to the length of the expressions, can be
generated automatically. Betore proceeding to the techniques involved, let us illus-
trate the basic McNaughton-Yamada construction and also show how the combi-
nation of unequally sized circuits tends to waste space.

Example 4. Let us build a circuit for the regular expression .*0(0 + IN*X),
whose parse tree was given in Figure 3. Using judicious choices between horizontal
and vertical connections when union and concatenation constructions are used, we
might obtain the layout'® suggested by Figure 11. There, only state-in and state-out
wires are shown; input, power, ground, and clock wires are omitted. (]

7. A Compact Hierarchical Implementation of Regular Expressions

There are three insights necessary to our implementation of regular expressions.
First, we must observe that given any regular expression whose parse tree has n = 2
leaves. we can find a subtree that has more than n/3 but no more than 2n/3 leaves.
For example, the tree of Figure 3 has six leaves, and its subtree for expression IN*X
has three leaves, which is greater than two and no greater than four. The subtree for
0 + IN*X would also qualify. This application of “divide and conquer” to binary
trees was first used in [9)].

Once we have found a subtree of about half the leaves, we can build a circuit C;
for it, and we can build a circuit C; for the remaining tree, with a dummy leaf in
place of the deleted subtrce. This leaf is an imaginary input symbol, and when
applying the McNaughton~Yamada algorithm to it, we generate a start state s and
a final state f, using the construction of Figure 4c, but without the arc. A wire
connects state s of Cz to the start state of circuit Cy, and another wire runs from the
final state of C\ to f. In effect, we have simply removed C, from its rightful place
between s and f. Note that both states s and f are unnecessary and can always be
replaced by junction points, even if latches are created for them initially. The
arrangement is sketched in Figure 12.

Notice how, if C; and C: are about the same size and shape, they are likely to fit
together, either side by side, as shown, or one above the other. In comparison, if we
had to distort C; by “squeezing” C) between s and f, we might or might not achieve
a compact layout. '

As our circuit design rules introduced in Section 2 do not permit us to cross more
than three wires at a point, simply laying down the wires shown in Figure 12 could
lead to an illegal circuit. We must therefore “pull apart” C; and C; at four channels,
in which the wires can run. The idea is shown in Figure 13. To create a channel, we
select a line across the circuit. Circuit elements and wires running parallel to the line
are held at one side of the line, while wires perpendicular to the line are stretched.
After stretching some constant amount, there will be room to fit another wire parallel
to the line. Circuit elements to which the wire must be connected are, we presume,
crossed by the line and can be moved into the channel to connect with the wire.

~_The above method for creating channels will be successful if the ongmal c1rcu1t

'(1) has all w1res runmng horizontally or vertlcally, BN TGS T

’ Notc, howcver, that there isan equwalcnt regular cxprcssxon with an O(n) area circuit.

 We shall use the term “layout” in what follows to refer to the relative positioning of various subcircuits.
The term does not have its more usual connotation of a much more detailed design.. However, the
positionings we use are mtended to be such that a layoul in the usual sense, could be doiie-without

repositioning., . @ — L O S U
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FiG. 12. Divide-and-conquer implementation E.@/.@
of regular expressions. N
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Fig. 13. Channels to carry wires of Figure 12.
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' FiG. 14. The channel creation procéss (a) before creating channel and (b) after creating channel,

() never has more than two wires crossing at a pomt and .
(3) uses “circuit elements” from some fixed set s0 there isana pnon bound on the

_size of a circuit element. . St hpe PR I N

Condmon €)) guarantecs that a channel of some fixed width wﬂl be sufficient to run
a new wire without crossing any circuit clements and (1) and (2) assure that the new
‘wire will ‘68ly ‘cross one other wire at a ume Fxgurc 14 glVCS an example of the
channel creation process. * " SRR :
The second insight needed is that even if Cy and C; are about the same sxzc, their
aspect ratios and relative sizes might be such that they do not have a common
dimension, either the same width (for a vertical arrangement as in Figure 12) or the
same height (for a horizontal arrangement). Unless our recursive circuit layout
algorithm works in such a way that when applied to C; and C; we can expect a
dimension in common, we may be forced to connect C; and C; in a manner that
wastes about a quarter of the space. Since the waste can go on at every level of the
recursion, we shall have an algorithm that uses area n'%:®® = n'4! {0 implement a
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10
8
3 for 1N"X
10 Fic. 15, Initial layout,
8
4 for ¢*0(0+D)

regular expression of size n. This result is superior to obvious methods, but not as
good as we can do.

The solution to the above problem is to design our recursive layout algorithm to
take as parameters

(1) the parse tree of the expression for which we want to design a cxrcuxt
(2) the number of nodes of that tree; and
(3) the desired aspect ratio, a real number in the range } to 4.

We assert that there is a constant d such that for each parse tree of n = 2 leaves,
there is a circuit of aspect ratio r and area dn, for any r in the range } < r < 4. It will
be shown that for n = 3 and aspect ratio r between { and 4, we can always arrange
Cy and C;, either horizontally or vertically, with a border and channels adequate for
connections between C; and C; and to the “outside world,” and with this arrange-
ment, recursive calls to design C; and C; can be given appropriate aspect ratios
between 4 and 4, so that C; and C; will have a side in common.

Example 5. Let us consider how the parse tree of Figure 3 would be processed
recursively by the circuit layout algorithm. First, we must find a node from which
between } and % of the leaves descend. The preferred candidate is the root of the
subtree for IN*X, which divides the leaves into two equal parts. As the initial call to
the circuit routine would normally ask for a square circuit {aspect ratio 1:1), we may
position the subcircuits for .*0(0 + D) (footnote 11), and 1N* X either horizontally or
vertically; let us choose the latter. As the first expression has four leaves and the
second has three,'* the heights of the two subcircuits should be in the ratio 4 to 3.
They are given the same width. A sample arrangement, in which the entire circuit is
allocated a 10 x 10 area (in some units), and borders are one unit wide, is shown in
Figure 15.

We now lay out the circuits for IN*X and .*0(0 + D) in the rectangles of aspect
ratios 3:8-and 1:2, respectively. We should, in principle, divide_each of these
expressions into two parts and recursively synthesize their circuits from circuits for
the parts. However, we omit the details of those recursive calls. One circuit that could
result is shown in Figure 16. [J

The third necessary insight is that two or more consecutive apphcanons of the
closure operator are equivalent to one. That is, for any regular expression R we have
(R)* = ((R)*)*. As a consequence, we may eliminate superfluous *’s and view regular
expressiens as if all the operators were binary operators chosen from the list: union,
concatenation, union-then-closure, and concatenation-then-closure. We use the con-
' D stands for the particular dummy symbol used as a placeholder for the expression IN*X,

12 However, if we are careful, we can avoid allocating circuit area for the dummy symbol, which 'we know
will be represented in the circuit by junction points only. e
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F1G. 16. Complete layout for the expression of Figure 3.

structions of Figure 4d and e, followed by f, when closure is desired, to build circuits,
just as in the McNaughton-Yamada algorithm. Operands are either singie symbols
or symbols to which closure is applied, and circuits for operands can be constructed
by Figure 4a--c optionally followed by f. Note that this algebraic simplification is
necessary to avoid awkward situations like the expression a™'"** which, if the
McNaughton-Yamada algorithm were applied blindly, would result in a circuit of
area O(n?).

The heart of the circuit layout algorithm is the recursive procedure LAYOUT
sketched in Figure 17. The algorithm itself is a call to LAYOUT(T, n, 1), where T is
the parse tree for a regular expression of length n, that is, T is assumed to have n
leaves. In LAYOUT, Z is assumed to be a fixed input alphabet defined globally, so
its size may be regarded as constant. Also, b is a constant chosen large enough that
the total width of the channels and border area, either in the horizontal or vertical
direction, is bounded abovs by b. Note that channels need to carry one wire each,
while border areas may need to carry 4 + log: | Z|| wires, one for each of the input
bits, and one each for power, ground, and the two clock phases Finally, A(n), the
area allotted to a circuit for a regular expression of length n, is a function of the form
dn — e\/— -/, whose adequacy we shall show in the next sectlon

Analysis of the Algorithm ':

We now show that LAYOUT can be made to use O(n) area, by showing that a linear
. function 4(n) can be chosen. We must pick A(n) to satlsfy the following constramts

(1) The area A(n) available for C in anure 14 must not exceed area A(m) + A(nz)
used for Ci and C: plus the area needed for borders and channels.
(2) The aspect ratios of C; and C; must be in the range } to 4 if that of Cis. -
(3) :A(2) must be large enough that we can build a circuit for any rcgular expressmn
— 15i.0f length 2 in that area, with any aspect ratio np to 4. _ -

Lemma 13 -If A(n) = 25b% and C of Fzgure 14 has aspect ratio 4 or less, then G and
C; have aspect ratios in the range {4

PROOF. The extreme cases we must consider are when n; = 2n, (footnote 13) and
either _ e e e e

" Since 2n/3 = ny > n/3 and ny + ny = n + 1, it is casy to show that n,/n, must be in the range § to 2. (
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function LAYOUT(T, n, r); (T is a parse tree with n = 2 leaves. LAYOUT returns
a circuit of area 4(n) and aspect ratio r; we assume without loss of generality that
r = |; otherwise rotate the layout 90°. The circuit rcturned has only horizontal and
vertical wires, and at no point do more than two wires overlap.)
begin
if n =2 then
use McNaughton-Yamada algorithm to produce a cnrcun c
else {n=3)
begin

select a node N of T such that N is the root of a subtree with n, nodes,
where n/3 < m, < 2n/3;

let 71 be the tree with root N,

let T be T with the subtree rooted at N replaced by & dummy lcaf

ng=n—m+1; (T;has n; leaves}

{now we perform horizontal decomposition, as in Figure 12}

h = vA(n)/r; {his the height of circuit C of Figure 12)

hy=h—~ b, {(height of C, and C; in Figure 12}

wy = (her = b)yem/(m + ng), (width of C,}

wy = her—b—w; (width of Ci}

ri = wi/hy; rz = wa/hy; {aspect ratios for €, and Cy}

C] = LAYOUT(T;, n, rl);

C2 = LAYOUT(T3, ny, r2);

Separate circuits ) and C: to make two horizontal and four vertical
channels for their interconnections, as shown in Figure 13. Figure 14
showed how this operation could be done in such a way that wires could
be laid along the channels without violating the circuit design rules we
have assumed;

\ Add border around C, and C, and run wires for inputs, etc., to feed both
circuits and to produce wires out of the bottom and right edge, as
indicated in Figure 10;
Call the resulting circuit C;
end,
return C;
end :

F1G. 17. The recursive procedure LAYOUT.

(a) C has aspect ratio 1, in which case C: coulid be too tall and narrow, or
(b) Chas aspect ratio 4, m whxch case C; could be too short and wide.

~ Let the height of C be A. Then in case (a) the height of C. is & — b and its width
is (h — b)/3, so its aspect ratio is 3, satisfying the lemma. In case (b) the height of C;
is again A — b and its width is §(4h - b) Thus its aspcct ratio will be 4 or less
provnded B IRV : +

L . h=b= (*)(5‘)(4’1 b),
that is, A= 2b. Smcc the area of C in this case is 4h? the lemma follows. [J

THEOREM 2. There exist paszttve constants d, e, and f such that for all n = 2.
the function LA You T will succeed in producmg a circuit if the allotted area A(n) is dn

~evn—f "

ProoF; Let us, for the moment, assume that d, e, and f satisfy the lemma for

n = 2. Notice that when we divide a tree T of n = 3 leaves into T; and T3 in function
LAYOUT, neither n, nor n, can be 1. Thus we can attempt to prove by induction,
with a basis of n = 2, that area A(n) = dn — evn — f suffices for LAYOUT to
produce a circuit. To develop the induction, let n = 3 and n, = an for some constant .
a, + < a < %. Then the areas of C; and C: are A(an) and A((1 — a)n + 1), respectively,
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since n, + ny = n + 1. Observe that C) and C; are, by Lemma 1, of limited aspect
ratio, and their areas are also chosen by LAYOUT to be of limtied aspect ratio.
Hence the borders and channels in Figure 14 have area that is proportional to any
side of C, or Cy, the constant of proportionality naturally depending on which side
is chosen. Specifically, there is some constant ¢ such that the extra area of circuit C,
beyond that of C, and C;, is at most ¢ VA(an). Thus

Ay = max Ld(an) + A((1 = a)n + 1) + cVA(@m ). (1)

1/3<a=x2/3

We assume A(m) < dm — evm —~ S for 2 = m < n, and show that the same holds

when m = n. By (1) it suffices to show that t

dn — ev/n ~f/

T = max [adn—-es/;z;+(l —aydn+d—ev(l -ay+ 1 -2f+cVadn]. 3]
1/3<a=%2/3

In the last term of (2), vA(an) has been conservatively replaced by vadn. Simplifying
(2), we obtain

0= max [e\/;—e\/-&;—z-eV(l—a)n-%l+d—f+c~/c_xzr~l]. 3)

1/3<a=2/3

Dividing (3) by —evn yields

1 -
‘ 0< max [s/z+\/l—a+-~l+f d-f\/;&]. @)
‘ 1/3<a=s2/3 n evn €

The first three terms on the right of (4) sum to at least 0.39. The next term can be
made 0 if we pick f= d. The last term is no more than 0.28 if we choose ¢ =3¢ Vd .
Thus, for these choices of e and f in terms of d, (4) is satisfied; hence so is (2).

Now we must satisfy the condition that 4(2) is adequate to hold all circuits for
regular expressions of length 2. We simply observe that we can pick d so that
A(2) = d = 3¢ Vd exceeds any quantity we choose, so an adequate value of d can be
found. O

One may wonder if the linear bound on area for a general regular expression is the
‘best that could be achieved. We believe it is, because of another assumption that is
generally made ([2], e.g.) about integrated circuits, that there is a finite (as opposed
to infinitesimal) amount of area needed to store one bit of information. If that is the
case, then we cannot improve on the linear growth rate in Theorem 2, because there
are regular expressions of length proportional to » that require n bits of information
to be remembered if we are to recognize them. A simple example is the family

O+ DFHO+ DO+ D).+ + 1),

where n terms (0 + 1) follow the 1. For each n, this regular expression denotes the set
of strings of 0’s and I’s that have a 1 n positions from the end. Clearly, we must
remember the last » inputs if we are to recognize all strings in the language.

9. Implementation Considerations. - ;- - . A (R
A compiler for single regular expressions has been implemented by J Ullman, it
follows many of the ideas outlined here. The major point of departure is that no
slicing of circuits is attempted. Rather, for each dummy symbol it creates a new input
wire. The circuit to “recognize” the dummy Symbol simply switches the dummy
input wire and the state wire, with no clocking gate. : ' '
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Fia. 18. Growth of circuit size with expression size.

As different parts of the circuit have different numbers of input wires, and the
number of input wires, including dummies, can get large, we do not know for certain
that this approach yields linear-sized circuits in the worst case. However, empirically,
the growth rate is fairly linear. Figure 18 shows the area of circuits generated by the
compiler for the regular expressxons S, that are intended to express the condition
that n input wires are fired in sequence.

By way of explanation, the input to the compiler distinguishes between “wires”
and “symbols,” the former being physical wires and the latter abstract symbols
mentioned by the regular expression. Thus we may define symbols a; and b; for
1 =i < n, to represent the fact that wire / is on or off, respectively. Then S, can be
written

by, + .‘(dlbz + ax b3 + e + a,...lb,.).

Sn» then recognizes those strings that violate the property that all n wires are on in
turn. The number of operands in S, is actually 2n, rather than n, but the difference
should be of no concern.

The compiler in question also implements the PLA strategy on small subexpres-
sions. It was found that the smallest ratio of area to number of operands for our PLA
implementation occurs when the number of operands is about 8, and approximates
6000A” per operand.' However, since there is overhead in wiring rectangles together,
our best results occur when PLAs are built for expressions in the 10-15 operand
range, sometimes more: The circuits whose sizes are represented in Figure 18 were
created before the PLA feature was implemented. That feature, used with various

size ranges for expressions that are to be mplemented as PLAs results in a 10-40

percent reduction in circuit area, typically. -+ " = A
Straightforward circuits to perform the same functmn as the cxpressnons S,. are
quite a bit smaller than the circuits produced by the compiler. However, it is unlikely
that the compiler can compete with the best ad-hoc circuits in any case. A more
promising gexample concerns regular expressions we shall call P, that recogmze

whether the first # synbols in a string of 0s, 1’s, and “don’t cares” match the last n,

with “don’t care” matching anything. P, has O(nlogn) symbols, n(6 + logzn) to be

' A is the basic unit of measurement in integrated circuit design. In 1980, circuits could be fabricated W't -
A in the range 2-3 micrens, but as technology nmprovcd we expected A to shnnk and hence the same

circuits to take substantially less arca.
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exact. While ad-hoc circuits based on shift registers exist and are probably smaller
than what the compiler can produce for all values of n, a fairer comparison would be
with a PLA mechanically generated from a state diagram, say using the Xerox
modules described in [11]. We have produced for Py a circuit of about two million
A%, which is close to the area of the straightforward PLA. Since the area of the PLA
will grow as n*, naturally we may expect the compiler to look progressively better for
values of n above 16.

10. Related Work

The ideas of divide-and-conquer layout and of channel creation were also used
independently by C. E. Leiserson [7] and by L. Valiant {15]. We could have used
the results of [7] to show Theorem 2 by proving a “2-separator theorem™ for the
graphs of nondeterministic finite automata that we obtain by the McNaughton-
Yamada construction. Strictly speaking, the connections needed for supplying, input,
power, and so on, must be ignored in that theorem and handled outside the
" framework of [7].

-
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to the array. () Connecting a linear array of K fixed 170 ports to distinct non-
defective elements from a parallel array requires d =N{log N) and ¢ =0Q{ogN). (3)
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elements; this problem is closely related to the percolation problem of statisti-
cal physics. In all the above cases, algorithms achieving the given bounds on d
and ¢ are presented which connect the array with probability approaching one.
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1. Introduction

Tho usc of redundancy to maintain the manufacturing yield of VLSI circuits
al economic levels is becoming a wideospread practice.. For example, many pro-
duccers of 684K RAMs use spare rows and columns. This has been reported to
improve the yicld by a tactor of five to eight [1]. Lincoln Labs [2] and McDonnell
Douglas [3] arc currently experimenting with restructurable whole-wafer proces- .
sor arrays. After testing the array elements, programmable links are either
opencd [1]{4], closed [5], or switched [3] so as to connect the nondefective ele-

ments into the desired configuration.

The resulting improvement in yield is achieved at the expense of an
increase in the number of elements on the chip, thé addition of links and extra
lnterconrxecti;)ns. an increase in signal delay and the effort of restrucluring. In
this paper we investigate these penalties for regular VLS] arrays. Our approach

is best illustrated through the following simple example.

A linear array of K identical processurs, connected in a chain, is to be
itnplemented on a single integrated circuit, or chip. Assume tﬁat each proces-
sor has an independent probability p of being defective and !-p of being
active, Then the probability that a chip is functional is (1~p)¥ and the expected
fraction of functional chips, or yield, approaches zero exponentially as K

increases.

In order to prevent the yield from approaching zero, the number of proces-
sors on the chip is increased to N=K/ R for some K<1—p and switches are pro-
vided Lo inscrl the processors in the chain. After manufacture, the processors
are tested. If the number of nondefective, or aclive, proceséors is less than K
the chip is discarded. Otherwise, K processors may be connected as shown in
Figure 1.1. Since #<1-p, the probability that the chip will have sufficient activé

processors approaches one exponentially as X increases.
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Fig: 1.1: Connection of a chain from an N-element linear array.

Unfortunately, signals from one processor to another may now encounter
additional propagation delay since the connections between processors are
longer than before. Suppose that the maximum tolera;ble connection distance is
fixed at &, where each processor has unit width. Let X be the number of ways
that a chain of K active processors can be connected under this constraizt.
There are fewer than N blaces at which a chain can start, and probability p?
that there will be too many defects before the next active processor. The proba-
bility that £he chain can be connected is less than the expected value EX <
N(1-p%)¥ < Nexp(—Kp®) which approaches zcro unless the size of Lhe chip, .,
grows exponentially with K--a very unsatisfactory situation.

We will assume here and throughout that the fraction of elements con-

nected, R, must be held constant as N grows. If we fix R<1-p, it is easily shown

that d=0(logN)! will suflice to connect a chain with probability approaching c=

[

exponentially in N.

In the following sections, we consider one and Lwo dimensional arrayvs ond

o

several connection patterns. Fxcept for the case of connection into a latti:
(See. ), specific lincar time algorithms are given for restructuring the ch:p
These algorithms will, with probability approaching one, connect any fractizn

I <1-~p of the total number of clements. Our resulls are:

. 1 We use O{') to denote an upper bound, ©-) 1o denote an exact tound, and Q) to denots &
lov.cr bound, all Lo within a constant factor.




Sec. 2: 'I‘he‘conncctlon of a lincar array of K=RN fixed input/output ports to
distinct, active elernents from a parallel AN-element array is to be accomplished
by mecans of a channel contlaining ¢ wiring tracks between the ports and the
array, with a switch at each crosspoint. A connection may not run salong the
channel for a distance greater than . Ve term this arrangement, shown in Fig-
ure 1.2, a selector. Theorem 1 states that unless t =0(logN} and d=0(logN), the
yield approachels zero. This is caused by the high probability that a run of
O(logN) consecutive defects éxists within the array. The proof of Theorem 2
describes a scheme which achieves these bounds with yield approaching one

polynomially in N.

— | : \ e b
v o v P \~ N l '\—j{‘\ [
—I-El\-} EJID y 0|u 4 %ﬂj
ACTIVE DEFE‘\CTII\/E BLOCK |

ELEMENT ELEMENT C,=2

Fig. 1.2: A section of a selector. K=(2/3)N and six wiring tracks are provided. A
typical block and cut § are shown; thes~ will be defined in the proof of Theorem

Sece. 3: The connection of K pairs of active elements from two parallel N-clement
arrays, shown in Figure 1.3, is surprisingly casier than the task of the seclector.
A run of defects does not necessarily cause a problem here because there are no

fixed ports--alternate pairs of elements may be connected from other parts of

Now
R

»



. the array. The prool of Theorem 3 describes a scheme with d=¢ =0{1) which

achicves yicld approaching one exponentially in N.

RO R K B s+ R ODO
) Di[];ﬁﬂ D—é] %

Fig. 1.3: Pairvisc connection of two parallel N-element linear arrays.

Sec. 4: The connection of a chain from a two-dimensional array, as shown in Fig-

ure 1.4, can be achieved with £=1 wiring track between elements, d=Q(1) and

yield approaching one polynomially in N. This is demonstrated by Theorem <4,

which is based on certain results concerning the percolatioh problem of statisti-

. cal physics. (A survey of percolation theory will be found in [6]). A slightly
| different scheme achieving similar results has been found independently by

Leighton and Leiserson [7].

&
B g—«
0
~J‘{-}3’l i
Fig. 1.4; Consivaticn of a chain of ¥ig. 1.5: Conncetion of a 3x3 square
K=11 element s from a ¢x4 array. laltice from a 4%4 array.

Scc. 5 The connection of a KxK square latlice from an NXAN array, as shown in
‘ Figure 1.5., requires a maximuni wire length d=0{vlogN ) Lo prevent yield frem

approaching zero. This is demonstrated in Theorem b using a lemma concerning




- the nonseparability of the square latlice. We conjecture that only a constant
nunmber of wiring tracks between elements is necessary, and show thal if this is
true d=0{VIogN) in fact suffices to connect the lattice with probability
approaching one‘ polynomially in N for any R<p. We note that Leightoﬁ and
Leiserson [7] have proposed a connection scheme with d=0O(VTogN loglogN) and
t=0(loglogN).

The problems of connecting a chain and a laltice from a two-dimensional
array of faulty elements were first studied by Manning [8] and Aubusson and
Catt [9]. They proposed algorithms for connecting chains, trees and lattices, but

were unable to provide any theoretical analysis of their work.




2. Scleclors

We begin by proving a lower bound on the maximum connection distance

and number of lracks required in a seleclor.

Theorem 1: For any 0<6<1, the probability that K=RN ports, aligned parallel to
a lincar array of N elements, can be connected to distinct active elements tends
to zero as O{pN'™/®°e¥) ynless the number of tracks in the channel ¢ and the

maximum connection distance d both satisfy

ool = SRS

dt >\ oloap 2

SRlogN L]

Proof: For any 0<4<1, let

6RlogN
—logp |

Divide the array and the ports into |[NR/m] blocks each containing m ports by

m o=

cuts perpendicular to the array. Any extra piece of the selector is ignored. Let

1n; be the number of elernents in block ©. Since the array has N elements,

IVR/m] .
s N (2.1)
i=1

Suppose there is a block with all its elements defective. If 2d+1<m or
2t +1=m the middle port of the block cannot be connected 10 an active element.
Under these constraints on f and d, the probability that a connection exists is

bounded by

Peon = Pino block has all elements defcctive])

INE/n) )
= 1T (-p™)
i=1
[:W?/m.]
< {} —])"‘/R] under constraint (2.1)

< exp{—p™/*|NK/ m])

< exp{—p dlaN/lomp (N(—logp)/ 6log N ~1))




- O(ph"“/dloi;N).
Substituting the definition of m into the assumptions on d and { yields the

result s

(We note that Theorem 1 may be extended to the case where the selector is laid

out within a convex region with all the ports on the boundary).

It is easily shown that d,£=0{logN) will suffice to conncct the selector with
probability approaching one. Simply divide the selector into N/ ¢logN blocks of
clogN elements and FclogN ports for some properly chosen constant c. The
Chernoff bound may be applied to show that the probability that a given block
has fewer than KclogN active elements approaches zero exponentially in logN.
Even when multiplied by the nurnber of blocks, this value still approaches zero.
Thus with probability approaching one, all blocks have at least enough active
elements to connect their ports. Each block may then be connected separat.ely

using t =KclogN tracks and maximum connection distance d=clog/N.

Not surprisingly, the constant ¢ is fairly large for this simple scheme. In the
proof of the next theorem we propose a better scheme which is nearly as easy to
implement, though more diflicult to analyze. For values of R near p, the con-
stant is one Lo two orders of magnitude smaller. For example, if $=0.9 and
R=7/8=0.875, the simple scheme requires ¢ =308 while the schemo presented
below requires only ¢x2.4. Simulation results for these values of  and K and

three fixed values of N will be presented below.

Theorem 2: For any rational number r<-—p, let w>0 be any constant such that
pexp{ur)+{1—plexp{~w(1-r)) <1i. (2.2)

Then for any 0<8<1t it is possible to connect A=rN-0{logN) ports to distinct

active elements of a linear array with probability 1-0{N'"%), using a maximum

connection distance




d = |[{rwé) NogN

and number of tracks

t =lrd],

The fraction of elements connected, R=r~0{N 'logN), approaches r.

Proof: We first verily that w exists for 7r<l-p. Let [f{w) =
pexp(ur)+{1~plexp{—w(i-r)), the expression in (2.2). Note that f(0)=1.

Evaluating the derivative of f (w) at w=0 we find

L7 (0) = pr-(1-p)(1—)
<0

since 7 <1—p. Thus there must be some w>0 such that f (w)<1.

Now we describe the selector. For the given r choose the smallest integer
b such that 70 is an integer. We assume that N>>b and divide the array inlo
[N/ b) blocks of b elements. There are fewer than b elements left over; these
are ignored. locate ports above the first 7b elements of cach block, as is shown
in Figure 1.2 for the case r=2/3, b=3. The other elements of each block will
serve as "spares."” Let d and ¢ be defined as in the statement of the theorem. A
port may be connected to the eclement below it or one of the next d elements by
means of the wiring tracks and crosspoints as shown. This arrangement

requircs at most £ wiring tracks and a maximum connection distance <.

The connection procedure is as follows: starting from the left, conniect each
port to the leftmost, previously unused, aclive element among these o7 to
which the porl can be counected.

Let (G denote the numiber of ports in blocks 1 through 7 whnch muest b cois
nected Lo subsequent blocks (see Figure 2.2). The procedur: coaic fant oty oo

of the following circumstances:




(N

(B)

All d+1 elements Lo which some port can be connected are either defective
or have alrcady becen used. Because the procedure gives priority to the
leftmost unconnected port, the next [rd] ports are also, as yet, uncon-
nected. Assume the last element within distance & of the port is in block .
Then, allowing for active spares in block i, G = 1+lrdl-(1—r)b >
rd~(1-7r)b. |

End effect: the last [rd] ports may not be able to connect. to their full set of
d elements since the array ends before their distance constraint runs out.
By not employing these ports, which reduces K by only O(logN), we can

ignore this problem.

Thus if there is no CG=rd—(1-r)b, 1=i<|N/ b}, the procedure will success-

fully connect the ports.

Let X;=7b ~(number of active elements in block 7). We have the following

recursion on C;:

Co'—: 0
G = max { Gi.1+X, 0},

m
Let S, = ), X;. Since the X; are independent and identically distributed one
i=]

can show [10] that C; is distributed the same as

max i O. Sh Sg, ey Sk ; (23)
We apply the Chernoff bound to P(Sizrd—(1-r)b). For any Xe{X;] let
d(w) = Eexp(wX)

= exp(wrd) p+(i-plexp(—w )]°

= pexp(wr)+{i-plexp{-w{: --r)))" .

Note thatl #(w)<i by (2.2). '

The probability that the procedure fails,

*fait < I’[(}>.rd.—-(1-—r)b for some 1'.]

£ W}C‘bl I"[(.“»>'rd —~(1 —r)()]

=)

~<az

om;t



._.
=

~
(o

-—

1
o

]’[(r)ya;l S >rd ~(1 --’r)b] | by (2.3)

%
i
S

-

N
N

“ [Q',c =rd~(1-r )b]

*
n

Z -
N
=

\

exp(~w (rd —(1-)b))d*{w) ' (Cherno fT bound )

A
i

k=]

exp<~w(rdm<1nr>b)>wi‘°' ofw) 15 00).

< o:'xp(“*‘u.)(rd'-(I—Jr)b))[{bv 1‘1’@1&)) _[1 ¢l~/b1(,w)][ @g-u,) ”

0(N1~—1/6)

fi

for the given value of d. This completes the proof.s

The connection procedure employéd in the proof of Theorem 2 is clearly
suboplimal since a port cannot be connected to elements on its left. An
improved scheme which connects each port in turn to the leftmost unused,
aclive element within the distance and track constraints is harder to analyze
asymptotically, but can be used for simulations. The results of some simulations
using the bidirectional scheme are shown in Figure 2.1. We note that both the

suboplimal and improved procedure require O{N) steps.

-10-
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3. Pairing of I'wo Parallcl Arrays

We now demonstrale that parallel connection of two lincar arrays requires
only constant d and £.
Theorem 3. I'or any 7 <p=1-p and K<r it is possible Lo connect K=RN pairs of
active elements from two N-element arrays with probability approaching one
exponentially in N using a constant number of tracks and constant maximum
distance

dt = £c45 (f)-‘r)‘z/zl.

Proof: We propose a scheme under which the expected [raction of elements that

may be connected is 7.

Let
b = lof) (B ~7)"2%/ 2]
Divide two linear arrays into blocks & elements wide and provide £=b tracks
between them. Choose any block of one array and let X be the number of active
elements in the block and let Y be the number of aclive elements in the facing
block of the other array. No matter where defects occur in the block, we can
connect min{X,Y} pairs of active elements with the tracks provided and rnax-

imum distance d=b,

Since X and Y are independent and both binomially distributed with param-

eters [b, p).

E*3(|X-Y]|) <= E(X-Y)? :
= E(X-EX)* - 2E(X-EX)E(Y-EY) + E(Y-EY)?
=2 Var{(X) = 2bpp.
Then the expected number of pairs which can be connected in each block is

E(min{X,Y]) = EX—E(max{0,X~Y])
= EX—(1/2)E(1X=Y)
> bp — Vipp/2
= br,

-12-



The cexpected (raction of elements which can be connected is thus at least r.
Since the defeets in cach block are independent and‘R<r the ChernofT bound
may be applicd to show that, with probability i-exp(~cN) for some constant

c >0, a fraction R of the elements can be connected»

by

-13-



4. Chains Connccled From a Two-dimcensienal Array

The problem of connecling a chain of active elements from a two-
dimensional array is closcly related to percolation theory. Percolation
processes have been studied extensively since they were first defined by Broad-

bent and Hammersley [11].

The site percolation problem concerns an infinite lattice of sites which are
empty with some independent probability ¢ and occupied with probability
§=q—1. A site is said to percolale if it is a member of or adjacent to an infinite
cluster of occupied sites. Broadbent and Hammersley demonstrated that the
probability of a site percolating is the same for any site, and so may be
expressed as a percolation probability function F(§), which is monotonic
increasing and attains the value 1 at §=1. They also showed that R(g)=0 for §

less than some crilical value characteristic of the lattice.

Little else of an analytical nature is known about R({§), although Monte
Carlo estimates have established empirical curves for various lattices [12]. The

curve for a square lattice is reproduced in Figure 4.1.

‘ .00 i

!
o8
06 -
R o
(@ 04
02 | !
0 [ 1 } L | SO} L
016 024 032 040 043 055 0.64 0.72 0.850 0.58
. q
IMg. 4.1: The percolation function R(§) for the square latlice as determined by
Monte Carlo estimates. {From Fig. 6 of I'misch, Hamrersley and Welsh [12]).

Our scheme for connectling a chain from an array may be analyzed using

-14 -



some results in percolation theory, contained in the following four lemmas. We
restrict consideration to a square lattice, though the resulls readily generalize

to others.

A site percolates unless it is enclosed by empéy sites. An enclosing walk is
defined to be a closed sell-avoiding walk on empty sites; diagonal as well as hor-
izontal and vertical steps are permitted since such a walk is capable of enclosing
a site. Lemma 1 bounds the probability that a site will be enclosed, and thus the

percolation probability.

Lemma 1: For a square lattice, if g <(1/7)exp(-2/3)~0.0733, then R(7) =

1-(945/ 4)g°.

FProof: An enclosing walk starting from a given site has 8 choices for the second
site and no more than 7 choices for each subsequent site. Thus there are fewer
than (8/ 49)7 distinctly shaped enclosing walks of length L. Furthermore, there
are no more than (L%/8-L/ 2+1) translations of a walk of a certain shape which

enclose a given site. Each of Lthe L sites in the walk must be empty.

The probability that a given site is enclosed by an enclosing walk of length
at least Ly>4 is no more than the expected number of such walks, which by the

above arguments is less than
2 (87 49)7E (L% 8~L/2+1)g
L=Ly

<= 3 (1/49)(7q)L L2
L=L0

< (1/49) f 19 ) =z
0 1

Lu"“

= (174907 )" [ =9/ 102 75)+6/ lox2(7g)—2/ log®{7q )]

<(135/7 28)(7q)"°"".

The sccond incquality is valid because for g <(1/ ?)exp{—27/3) the terms of the

«-15-



scrics decrease monotonically for Lz3.
Since an enclosing walk must contain at least 4 sites, 1-R(¥) s
(1857 28)(7q )%, which yields the result

We now prove a convergence result for the {raction of sites that percolate.

Lemma 2: Let X be the number of sites in an NxN secticn of the infinite square
lattice that percolate. 1f g <(1/ 7)exp(~2/ 3), then for any T <R(7). P(X<rN?) <
O(N-2).

Proof:'Lct A and B denote the event that site a and site b percolate, respec-
tively. Let d(a,b) be the Manhattan (rectilinear) distance betweena and b. Let
W denote the event that there is an enclosing walk surrounding a or b of length
at least d(a,b)/2, and ¢ its complement. Note that there can be no overlzp
between a walk of length less than d(a,b)/2 enclosing ¢ and a walk of length
less than d(a,b)/ 2 enclosing b. Thus P(A4,B) = P(A.B.W°) = P(AB{W°)P(I*)

= P(A|We)YP(B|WeYP(Ie) < P(AYP(B)/ P{I¢) = P(A)P(B){HP(W)/ P{ l‘/")}.

In the proof of Lernma 1 it was demonstrated that the probability that a
given sitc is enclosed by a walk of length at least Lg is less than ¢,{7g) Lo for
some constant ¢,. Thus P()<2c,(V7q)%4¥) We can thercfore choose con-

stants dg and ¢z such that if d{a,b)=dgy then P(I¥°)zc,.

Finally, note that the number of sites at distance >0 from a given site on a

square latlice is 4d. We can now upper bound the variance of X as [ollows.

Var (X) :};‘ 21)(,1._»3) - [EP(A)]’-‘

< Zx PLA B)+ ZY‘ pA)p([})[MP(W)/P W")] F!’ A]

d(. b)cio d(a. o)qu

dy- 1 _
<) (ad) + Y, 2 (4d) 2 (V77 ) /ca
a d=C a d=d,

= O(N?0{:) + D{NB)O(1) = O(N®).

~-16 -



The expectation of X is EX=N2R{¢). By Chebyshev's incquality,

P(XsrN%) s P(|X~EX|2EX-rN?)
< Var (X
(EX-TN?)?

= O(N-%)~

Lemmma 3: Suppose g <1/7. Consider those sites within an NXN seclion of the
infinite lattice which are members of infinite clusters of occupied sites. Except
for a fraction O(N'logN), these sites form a single cluster within the NXN sec-
tion, with probability 1—0O(N~2).

Proof: It is known that on an infinite lattice, the set of occupied sites contains
only one infinite cluster, with probability 1. (Proved in [13] Sec. 9 for bond per-
colation, extended to site percolation in [14]). However, when the NXN section
is removed from the infinite lattice, the part of the infinite cluster lying within
the section may be disconnecled into several components, séparated by self-
avoiding walks on empty sites (not necessarily closed). By arguments similar to
those in the proof of Lemma 1, it is easily shown that the expected number of
self-avoiding walks on empty sites starting at a site within the NxN section and
having length at least Lya=—4log(N)/log(7g) is O{N"?). Thus with high proba-
bility, only sites within Lmax of. the boundary of the section can be cut off from
the rest of the cluster. These sites account for a fraction O{N~"NogN) of the N?

sites.e

Lemma 4: Yor cach i=1,., n, let A; be the event that every site in seme finite
non-empty sel is occupied. For each j=1,... et 5 be the avenl that every
site in some finile non-empty set is occupied. No assumption aboul the

cxclusivity of the sets is made. let A=A and B= 0. Than PLTE)=P(4).

The proof of this intuitive lenmuma will be found in {13, T.emma 4.1].

-17-



We are now ready for the main result of this section.

Theorem 4: With probability 1-0(N~?), a chain of length K=RN? can be con-

nected from an NxN array with maximum distance

d = l\fSIOg((‘ﬁ-—R)/c) / log(p)|,

for some constant ¢ >0, and with one track in each channel.
Proof: The genecral idea is as follows. Group the elements into N%/b squere
blocks of b elements each. Choose b so that each block has high probability of

containing at least 4 active elements.

Each block may be considered as corresponding to a site on a square lat-
tice, and if the block has at least 4 active elements, consider the site occupied.
Using the previous lemmas, we show that nearly all sites are in or adjacent to a

single large cluster of occupied sites.

A tree of maximum degree 4 can be constructed which spans the cluster of
occupied sites and all sites adjacent to the cluster, with all non-leaf noces
situaled on occupied sites. This can also be considered as a spanning tree on the
blocks. Since all "non-leal”” blocks have at least 4 active elements, a chain of
active elements may be formed by looping around the tree without ever having
to connect two elements from non-adjacent blocks. (See Figure 4.2). The max-
imum Manhattan connection distance required is

d<3Vh -2, (<1
Only one track is neecded between elements to accomplish this. The censtrae-
lion of the spaunning tree requires O{X) steps and the conncctlicn of subchainy in
the blocks also requires Q(K) steps since there are only a constant mumiber of

clements in each block.

For any choice of b, lel g be the probability that a parlicular bloch contiains

fewer than ¢ actlive clements. Then

-18-



o DEFECTIVE !
ELEMENTS ERECTIVE !

|t— —r] - _
{omitted for clarity)

By
G e, | o B |
—o || ] |

. ACTIVE —_
ELEMENTS e

Jo
ELEMENTS

i

ol

& |

S
& e

| i?[mr_rjpf“mr
HE

Fig. 4.2: A section of an array connected into a chain. Each block contains b ele-
ments, although only the active elements are shown.

b _ -
7= [i ]1’0“}7"“ <2b%®3, (4.2)

1=0

Choose b so that g<(1/ 7)exp(—2/ 3). By (4.2) this requirement is satisfied
by b=0(log™'p). For this value of g, we can apply Lemmas 1-3 to percolation on
an N/ Vb xN/~b lattice of sites corresponding to blocks, as described above.

ﬁ,y Lemmas 2 and 3, for c;ny

r < R{(7) (4.3)
at least 7N?/ b sites will be members of or adjacent to a single cluster, with pro-
bability 1~0(N ?). By the correspondence of sites to blocks, this means that at
least N2/ b blocks are members of or adjacent to a single cluster of blocks con-

taining 4 or more active clements.

-19-
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We proceed to bound the number of aclive elements in any such rN2/b
blocks. Choose any

R <. ~ (4.4)

By a sirnple application of Lemma 4, the probabilily that the number of active

elements in the blocks is al leasl KN® given that all the blocks are members of

or adjacent to a .iuster is al least as greal as the unconditional probability,

where the elernents of Lthe blocks are considered independent. Since R<rp, the

ChernofT bound proves that the unconditional probability is 1—=0O(N"?).

By Lemma 1,

R(§)p > [1-{925/4)q1p
= [1-(945/4)(26%° )]0 by (4.2)
2P - dez/a (4.5)
by (4.1) for some constant ¢ >0. "

q

Combining (4.3)-{#.5), we have shown that for any /2 such that R <p—cp®™/?,

or cquivalently

d > V3log((p—%)7¢) 7 log(p),
a chain of /'N* clernents can be connected with probability 1-0{A %)

The following exainple illustrates the practicality of this scheme. Suppose
cach clement is defective with probability p =0.5. Choose b =9, and hence d=7.
The probabilily thal a block of 9 elements has at lcast 4 active clements is
grLu7abl, Trom Dgure 4.1, we see thal for an infinite square lattice and this
volue of g,oany block is practically certain Lo be & member of or adjacent Lo a
cluster, Bven for @ finite 30x30 clemoent array, and accordingly a 10x10 lattice of
Llocks, an average of 94 9 blocks were members of or adjacent to the largest
cluater of bloeks with 4 or more active elements in H00 andom trials, (Std

dev.:05).

We conclude thiz section by mentiomng the problem of external conpuee-



tions to the chain, or actually the loop, of elemenls formed by the scheme. If
two input/output pins are placed in any block, the probability is £(g) that ene
or more elements in the block will participate in the loop, and the pins may be
inserted in the loop with connections of acceptable length. If this reduces the

yicld too much, more sels of pins, or longer connections may be required.



5. Laltices Connecled from Reclangular Arrays

Next we consider the connectlion of a square latlice from a rectangular
array. Before proving a result on the connection distance neccessary for this
task, we present the following lemma concerning the scparabilily of the sguare
lattice.

Lemma 5: Consider the graph corresponding to a ka squarce latlice. Any parti-
tion of the K? vertices inlo three sets 4, B and C such thal no vertex in A is con-

nected to a vertex in B must satisfy

mm{lmn. HBH]s el el

The set C in such a partition is called a cutset.

In essence, the lemma bounds the size of the largest set which may be
disconnecled from the remaining (larger) part of the laltice by removing only a
given number of vertices. It is readily apparent thal choosing C, the set of

removed vertices, to lie along a diagona! achieves the bound.
(&] (=1

The proof of this lemimma will be found in [15]. A slightly weaker version is
proved in[16]. We now prescnt the theorem.
Theorem &: Consider an NX/N squarc array with elements space unit distance
apart. Let K®=RN® Then for and 0<6<: the prebability that a AxK lattice can
be connected tends to zero as O(N®~'og?N) unless the maximum connection

distance satisfies

A |
a»\/_ ) = (VTGN ) (5.1)

toa(p)

Froof: The proof proceeds in thrvc‘. steps First we define sels of array elements
called grids. Then we show that there is, with probabilily approaching one, o
grid with all its clements defective, FPinally, we assunie the exiztence of avdefee-
tive prid and use Lernma O Lo show that of (O ) s vielated it 1s not possible to

conneel alatlice.



For any given N, K, and p, choosc integer L such that

2+R = LR > 2. (6.2)
For any 0<é<1 lel

_(5l0 N R - ]
N/ _ﬁLlog@) and M= L(m+1) (6.3)

(lz] denotes the greatest integer less than or equal to z. Likewise, [x] denotes

m =

the least integer greater than or equal to z).

Grids are subsets of the clemenls of the AxN array consisting of M
columns of L blocks. Fach block consists of m xm elements positioned as shown
in Figure 5.1. All blocks are lined up in one of L horizontal bands. Each block
column may take one of [N/ M]—m+1 horizontal shift positions within fixed,
non-overlapping regions.

This is made precise by the following definitions. Let e;, be the element in

row z and column ¥ of the array. The 7' block column, 1sj<M, is a set

L-1 F¥m=l N/ Lem
G = v U iez:yi
$=0 s=z;  y=IN/L4)

where z; may be any integer

(G-1IN/ Hj+1 < 2 < §IN/ H]+ 1=, (5.4)
Thus there are |N/ M]-m +1 choices for cach block column C;. :

A grid is a set

N
G=U G
i
for some choice of =z, =z, ..., xy satisfying (5.4). Thus there are
(N7 A=+ M grids.
The i gap in a band of a grid is the arca between the pair of bloeks in the
i-1%" and i"™ block columns.

th

The width of the ' gap is necessarily the same in any band and is given by

A
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Fig. 5.1: The structure of a grid. The dark squares represent mxm blocks of de-
fective elements.

1"‘1 1=1
N gi = ziH-(:r; +m,) R<isM . (5{))
N41—(zy+m) 1=M+1

It is shown in Appendix 1 that with probability 1~0(N®ogiN) there is a

grid all elements of which are defective.

Suppose that the maximum connection distance d satisfles

d < (m+1)/ V2 (5.6)
and that given an arbitrarily large NxN array with a completely defective grid,
there is a way Lo connect a KxK latlice under constraint (5.6). We demonstrate
a contradition

Let Vg be some subset of the AY conncctrd clements which s tecated

onlircly between some pair of adjacent bands {or above the top band) and which

.2 .



is connccted cven alter cutting all edges passing into the gaps. Then since V
Jias belween adjacent bands,

1 Vell = N(IN/ L}=-m) < N3/ L. (5.7)
Also let K and Vyy 44, 15i<M+1, be the sct of elements connected to Vo in or
through the i** gap of the upper end lower band, respectively, of the pair of

bands surrounding V.

It is shown in Appendix 2 that we may always choose ¥ so that for all i

HVo U UV I = [ %] (5.8)
im

Note that under assumption (5.6) on d, the connected lattice of elements
cannot cross over or enclose a block of mXm elements which are all defective.

(See Figure 5.2).

" m ELEMENTS

[

m ELEMENTS |

N»I '

Iig. b.2: The shortest conneclions enclosing an mxm block of defective ele-

ments. Al least one connection must be of length d>{m +3)/ VB3,

Therefore any clement connceted to ¥y throuszh one gap cannot be connected
through a different gap as well or else a block would be enclosed. 1n olher

words, the sets 3 and ¥ are disjomnt for eny i#5. A Lypical case is sketched in
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Figure 6.3.

Fig. 5.3: A set of connected elements Vp between two bands and the associated
§Vi]. The dark squares represent blocks of defective elements.

Furthermore, if the gap through which ¥, is connected hus width g;, there is
a cutset of no more than g;(m+1)/VZ elements whose rernoval disconrects ¥
from Lhe rest of the lattice. This is because ¥; is connected only through the i
gap. and since the given 4 is sufficient to pen.etréte only (m+1)/ V2 layers of

elements into the gap, by (5.6).

Noting that each connected element corresponds to a vertex in a KxX lat-

tice, we use Lemma 5'to upper bound || ¥ || as follows. Identify A = V, (U ¥,
i

C as the cutset, and B = V,\C¢. By (5.8), ||B]||<!]A]|]. We have

Vit = 11BlI+||Cl!
e
< el %«'—Cm» by the lemnia
< gHm+1)%/4 + g (m+1)/2V3 . (5.9)

as explained in the above paragraph.

From definitions (6.4) and {(h.5), or a glance at Pigare b, we have
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0kg; <BN/X 1S+ |
gy < v . (5.10)

Since there must be K® active clements in the lattice we have

L€' X3))
K= ||Vl + ﬁ N¥%)|

. .
’1 + 21% [g;(m+1) 74+ gilim+! )/2\/2] by (5.7). (5.9)
= N2 @‘n-‘-x)' ('2:192+ L_“'_‘l_ g;
L i= j=l
2 a\2 ¢ ]
< li + (m;‘) ol ["}?f } (m\;-z-) N under constraints (5.10)
2N N T '
A + O(NVIczN') by (5.8)
< K?

for sufliciently large N by {5.2), which is a contradiction.

We conclude that the probability that the lattice can be connected goes to

zero unless (5.6) is false, that is
d=(m+1)/Ve
oRloa{V)
= \[—2(2+R):og(p)

by definitions (5.2) and {5.3), which yiclds {5 2), completing the proof.»

Unlortunately, Theorem 5 offers no lower bound .on the number of wiring
tracks ! required between eleminiiz We conjecture that £=0(1) will suffice. I

this is the case, it i3 easiy shown tien So0(VlogN ) is indeed all that is

reqaered. To demenstrstle Uva, sinoly eoccs Uive XN array inte sguace blocks
cor’ mining clog v elemeents T e o0 ' s 3 e s proper. chosen, the
Chrrnoll bound cen e ool v sbo Tl oy <P the probaivlidy that any
poroouiar block cosmtane Hoacr e 00 0L aclive dlements leds Lo vero
.- ‘,;-m.v'-:‘.'\l-\ﬂ_\« e tan Vel Lrece e o Ve loa N bloehs, the orobability
P e ol them e oo o S0 ' ents also lends o vere We Lhere-

.4

>, [ RS hilat !
e ’ ifgfh”j NS Cﬂg N

-
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fore suppose that a VikelogN xVikclogN sublattice can be connected in each
block with maximum connection distance O{VlogN'). By providing Viclog ™
tracks between adjacent blocks, which does not affect the order of growth of the

total arca, we can certainly connect Lhe sublattices into one VR NxVE ¥V lattice.

Leighton and Leiserson [7)] have proposed a scheme which can connect any
fraction R<F of the elements with probability :-i/N  using
d=0(VIogN loglogN) and t =0(loglogN).

If the restriction to arrays of unit-square elements in Theorem 5 is relaxed,

the following Corollary may be demonstrated.

Corollary: Consider and NXN rectangular array with elements of area 4,. Let
K*=RN?. Then for any 0<4<1, the probability that a KxK lattice can be con-
nected tends to zero as O(N%'log*N) unless the maximum connection distance

satisfies

A ORTog{N) ,
2z R)lozp (VA logN).

The proof is basically the same as that of Theorem 5, and will therefore be omit-

d =

ted. One differcnce is that the m-element by m-element defective blocks must
be replaced by rectangular my, Xm, blocks so that each block is still approx:-
mately square in terms of physical distance. The log*N term in the bound on
the probability of conneclion, rather than the log®V term in Theorcr 5, occurs
because of the ¥ term in {A1.7) A must be proportional to the siguee of 1
number of elements on a verlical side of a defective block, my,, «hitel o nowe b

O(logN) as comparad with m=0{(Tog V).

Thompson {17] has proposzcd a VIS model in which the e of o oetos s

must increase lincarly with the lensthe of the longest wive it deo whds oo
justificd by noting that the capacitance of a wire increases incaei Lt gt
length. The deve current needed lo charge or discharge the woee g a ven
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interval, and hence the arca of the driving transistor, must thercfore increase
lincarly with wire length. We therefore suppose that A, =0{d). Substituting this

into the result of the Corollary, we obtain d, A, =0{logN).

These bounds may be achieved using selectors in the following way. We
make the elements of width O(1) and height O{logN), and arrange them in K
rows of N elements. Between each pair of rows, we place two selectors, one con-
nected to the upper row of elements and the other connected to the lower row.
The selectors share a comimon row of K ports positioned between them. The lat-
tice can be connected if a chain can be formed in each of the rows of elernents
and if every row can be connected to the ports above and below it by the adja-
cent selectors. The probability that this will be possible can easily be shown to
approach one in light of the discussion of the linear array chain problem in Sec-

tion 1 and by Theorem 2 with 8 chosen less than 1/2.

Further work may be focussed on inventing a connection scheme with
d=0(ViogN ) and ¢ =C(1) or, alternatively, substantiating the assumption that

the area of a driver must increase linearly with wire length.
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Appendix )

We show Lhat a completely defective grid exists with probability tending to
one, Let B be the number of grids & containing only delective elements. By the

Chebyshev inequality,

P(B=0) s P(|B~EB|=EB) < % (AL.1)

We upper bound the variance as follows:

- C,UG,| 16,11+}1C . 2

Var B= Y plloClly yry pliGilisn 2”-—[2;0“"‘“]

Gy Gy G, G, [
GnNCo#¢ G nGp=¢

< 2 2 pHGlUGaH

= paAm® yy§1 116Gl

1
cir\oa’e¢

Taking advantage of the restriction that G intersects G, we assume the i*
block column is the first which overlaps, and expand the sum over Gz into sums
over the possible horizontal shifts of each block column in G,. Let C; and D;
denote the set of <lexn~n*~ .n the 7** block column of G, and G, respectively.

Then

Var ¥ wpt YY) g IR by
G Dy

1 i=1 1 ""l:
CinDy=¢ GnD-y=9
~{1Gnpl | “UH&e1nD, 1l ~HCynDyl|
Y p Gy EP Ge1nDyy s EP uu
by: Disy Dy
GnD;=¢

Note that the telescoping sums over the D;'s can be made a product of
sums. This enables us to treat each sum separately, and upper bound them as

follows. For the terms 1<j<i,

g:) 1 <
Gnby=

since there are this many horizontal shifts possible.

N L
FJ -m +1 (A;.Z)
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For the i term, letting k be the number of columns of elements in anbg,

E p GBI g g tm? R e

k=)
c‘nD‘M
=p~tm i+ 2 B—_f,;:—
- 14pt
< L"'lg __L__
since m=1.
For the terms i>j=M, we can just add {A1.2) and (A1.3).
- ' L
Yo Al ¢ ﬁ J—m+1 + pim? [—‘L+ ] (A1.4)
by

Bounding the terms j#i by (A1.4) and the i term by (A1.3), and noting

N
possible grids G, and M possible first overlapping

—-fi] -m+1]

that there are [ 7

block columns 1,

N
N1t 2LMm? ¢
a J m+1] P o

[N

. ~Lm®
7] ] m +1+p

Va.rB([

1+pl m?| 1+pk
I-E_J -L [-‘L-] (A1.5)

The expectation is

E B =Y plell
(7

N
R

Bringing together (A1.1), (A1.5) and {A-.6).

pipeo) < Yor B,
P(p=0) = L2t
N1
M N l -m +1 +p‘1'"12{..~."12.§_ ~Imel ]
< M 7 -p
] X
N -m+1]
M
N-)
liE_’Z..J 6
1-pt 1+pl N
<M1+—!L~m - ~N~~-m
M

(A1L3) .



since p~'m® < N8 from definition (5.3), and [N/ M|+1>N/ M. Making use of the

’ relation (1+x)¥ = exp(ifz) Lo upperbound the first térm, we have
L
e -1y u
P(B=0 : | Lipt Mz AT
=0) < exXp| T NS [1-p1- NS —m N (a:7)

= O(N®-og®N)
since M=0(logN), m=0(VIogN) and L is a constant. So the probability that

there is at least one completely defective grid approaches one.

Appendix 2
We wish to show that there is a V; such that all ¥ constitute the smaller

side of the partition induced by their respective defining gaps; that is

[1Vou U Kll= [[%I]  foralli (A2.1)
jwi
. We begin by choosing some subset of the connected elements which is

located entirely between some pair of adjacent bands (or above the top band)
and which is connected even after cutting all connections passing into the gaps.
Call this Vp, and let the corresponding §V;} be as defined following (5.7). Note
that since there are K? connected elements, | [V |+, | [V || = k2. Thus there
can be no more than onc ¥ with ||V ||>K%/R2 and one of the following cases

must apply.

Cuse 1: Suppose that the chosen Vp is such that ||V ||<Kk?%/ 2 for all i. Then for

alli, || <= K=V} =] ’OUjUiVJ- I, so that the chosen Vo satisfies (A2.1).
”»

. Case 2: Suppose that Lhere is exactly one V; such that ||V ||>k%/2 Then we
choose as & new V' the part of ¥ which may be connected Lo Vp by passing
through only onc gap and is located entirely between two bands. (See Figure

‘ A2.1). We repeal this procedure until Case 1 applics to the current V.
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Fig. A2.1: The definition of a new Vy' from a given ¥;. € is the set of connected
elements in the gap, whose removal must separate V; from V.

We demonstrate that the procedurz must terminate as follows. Let C be
the set of elements in the gap. By the argument following (5.8), C is a cutset and

({1c||?+|1C]||)/ 2 is inuch less than K%/ 2. By Lemma 5, either HVOL’%V;‘ [l <
j

(1tctiz=tieli/2 or ||Vl < (l1Cl1*+]1c||)/2. (Note that Cc¥;). Since in
Case 2 | | Vi | |>K%/ 2, it must be that

IlVonLéV,-II +Ici = (IclE+lic])e
<K?s2.
Thﬁs the procedure can never return through the gap from V' to ¥ and we can
be assured that the procedure will never repeat a choice of ¥;. Since there are

only a finite number of possible 14, the preocedure must Llerminate, yielding a

choice satisfying (A2.1).
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Abstract

Delayed branches are commonly found in micro-architectures. A

compiler or assembler can cxploit delayed branches. This is -

achicved by moving code from one of scveral points to the
positions following the branch instruction. We present scveral
strategics for moving code to utilize the branch delay, and discuss
the requirements and benefits of thase strategies. An algorithm
for processing branch delays has been implemented and we give
empirical results. The performance data show that a reasonable
pereentage of these delays can be avoided.

Introduction

Recent research has focused on the rclationship between
compilers and computer architecture,  The importance of
computer architectures as hosts for compiled code is recognized
as a dominant factor, and modern instruction scts are designed in
close interaction with compiler writers. This dcveloj)mcnt allows
functionality to be provided either in hardware or in softwarel,

Branch instructions arc a major obstacle for pipclined machines.
Most modern machines prefetch instructions before the preceding
instructions have been completed. If one of the executing
instructions was a branch instruction, the sequential successor of
the branch instruction might not be th~ next instruction to be
executed. If pipelining is also employed at the micro-instruction
level, the micro-machine faces the same problems?,

Conventional architecturcs employ additional hardware to cope
with this problem. They detect the presence of a branch
instruction and delay prefetching until the branch condition has
been cvaluated and the correct successor instruction has been
oblained. Many pipelined machines with instruction lookahead
use a branch prediction scheme to reduce the latency of obtaining
the successor iustruction. Most micro-architcctures do only
limited prefetehing or do not support this feature in hardware at
all; they require that i be adhered to In sofiware.  This tusk
becomes increasingly difficult in the presence of mulid-way jump
instructions*,

The MIPS project has been supported by the Defense Advanced Rescarch Projots
Agciwy under conrsct # MIDA903-79 C-0680. ‘I hormas Groas §s suppoited by an 1M
Graduate Vellowship,

0194-1895/82/0000/0114800.75 © 1982 IEEE
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Software techniques can be used to reduce the delay time
associated with a branch. A software approach can also eliminate
altogether the need for the hardware that detects the branch and
prevents further execution until the successor is known. Since
some number of sequential instructions following the branch are
always exccuted, the branch optimizer must reorder instructions
or insert no-ops to prevent the undesired execution of instruc-
tions. Both the RISC3 and MIPSS architectures have no hardware
branch delay so such a technique is nceded. The IBM 801 uses a
stratcgy that allows either hardware branch delay or exccution of
the sequential successor of the branch instruction”,

There is an additional argument to consider in optimizing brarich
delays at the microprogram level, If microcode is used to directly
support high level language featwres, special attention has to be
given to branch instructions. These instructions are extremely
frequent; benchmarks show that 25-30% of the instructions
exeaiited in some architectures are takes: hranches®, Branch delays
are a dominant factor in machine spicea und branch instryctions
are a major time consumer duc to iheir adverse effect on
pipelining?. Optimizers that climinate the adverse effects of
branch delay could be used to introduce branch instructions that
are optionally dclayad, or even branch instructions that always
execute their sequential successor, The attractiveness of these
choices depends on the effectivencss of optimization techniques
like those presented in this paper.

The problem

In the following we will use the term branch instruction to refer to
any instruction which changes the control flow, This includes
conditional as well as unconditional branches and also trap
instructions (which are called supervisor calls on some machincs),

Delayed branches

In a pipelined machine, instruction /is fetched and starled befor?
some of ils predecessors £/, £2, ... have completed. This stralegy
causes problems if there are dala dependencics between these
instructions!®, In this paper we are concerncd with the related
problem, called delayed branches, Informally, a delayed branch
of length 1 means that the n instructions following the branch ae
atways executed whether or not the brunch is taken,

B
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Definition §: Lot instruction / b a branch instruction
with target /1. The brauch is a deluyed branch-with delay
n, if the sequence of instructions cxecuted when the
branch is takenis { i+ 4, ... I+n L.
The MIDPS processor bas instructions with branch dclay 1 and 2.
Indirect jumps have a branch delay of 2 as they involve a memory
relerence. All other control flow instructions (these are direct
jumps, conditional branches, and trap instructions) have a branch
delay of 1. The RISC processor’ has branches with delay L.

1 move 0, r
2 bequal r1, r0, 112
3 svd ”n, 0
4 Toad y, 2
[ ] add 2, 0
[} L32: store 0, x

Figure 1: A simple example

Figure 1 gives an example. Assume that i0 has initially the value
1. 1€ this code is exccuted on a machine with branch dclay 1, the
execution sequence is:
in location x.

In many e¢nvironments, the sesponsibility to deal with this
characteristic rests with individual programmer; instructions have
to bec moved manually during the coding of a program. This
practice is error pronc and not advisable if the instructions have
different branch delays: it has to be automnated if the instructions
are generated by a compiler.

Sottware solutions

The simplest (completely unsatisfactory) approach for handling
delayed branches is this : if the branch has dclay a, then insert n
no-ops immediately following the branch. But branches are very
frequent in compiled code; padding ecach branch with n no-ops
will result in cxcessive program size even for n = [. The
evecution of large numbers of no-ops will severely degrade
dynamic performance, Faced with only this choice, the hardware
would be forced 1o implement branches so that only a time delay
i incured and no cxtra instructions are executed. The alternative
software approach is to move uscful instructions afier the branch
instruction and resort to the insertion of no-ops only when no
other instructions can be found. If this strategy is successful, the
pwogram may be significantly (astcr and only slightly larger,

There are two possible ways to handle code nmwwvement for
delayed branches. The first approach puts the burden on the
code generutor: the second approach treats delayed branches in a
post-pass after a standard code gencration phase,

Several problems arisc with the first approach. Code generators
are normally fairly complex; adding this additional task makes
de genertion ¢ven more cumbenome. This strategy also
fequires that the output from the code gencrator is indeed the
f:ral and cotrect sequence of instructions. This assumption is not
dwavs possible or feasible. For example, it makes peephole
‘Dtmization difficult, if not impossible. If thate are ather pipeline
mbgints or if some instruction packing is done, the code

1-2-3-8 and the value 0 will be stored-

"s

generator might not know the shape of the object program!©,

For these rcasons we optimize delayed branches in a post-pass.
‘This approach also allows us to optimize handwritten assembly
language programs o microcode. The algorithms and optimi-
zations in this paper can casily be adapted for use in a code
gencrator that will be the final pass of a compiler.

Optimizing the delays

We now discuss the alg.orithm for the treatment of delayed
branches. In this context we limit the discussion to conventional
two~way branches. The cxiension (o n~way jumps® is straight-
forward, We consider only resources visible at the level of
assembly language, i.c. registers; however our model can be
extended to include other resources as well,

Notations

Definition 2: Let instruction / be a branch instruction.
We denote with 1+ the branch target and with ¢~ the
location of the next instruction executed if the branch is
not taken.

For example, if instruction /is branch-on-equal R1, R2, L, then t*
= Land r = i+ 1 Table 1 classifics different lypes ol branch
inseructions according to our knowledge about the valucs of t*
and ¢~ from the branch.

Group 1 known __t~ known
branch

Jump to subroutine yes not applicable
jump direct

branch conditionally yes yes

trap 0o yos

svC

return to subroutine no not applicable

jump indircct
Table 1: Control Flow Instructions

For trap instructions t* is unknown, since although we know that
execution resumes at a predefined location in the operating
system afier the trap has been raised, but we have no information
about the instructions at this branch target.

The branch delay optimizer must also know the status of the
refevant resources upon entry into a basic block, TFor cach basic

" block l'l) IN(BJ) is the set of vegisters which might be referenced

in this block or any successor belore they are written. The
compiler provides this infornation: it is readily available in a
compiler from the register allocation routines.

The information contrined in IN(B) must be conservatively
correct in the datatlow sease: at entry into basic block / any
regisier that could be read before it & writien on any exccution
path darting with basic block j must be in the set IN(I3). The



_—

accuracy of the sets IN(1;) depends on how the register allacation
process is done. If the compiler is using a global register allocation
scheme, the information can be taken from the results of the data
flow analysis. In the case of a simpler aliocation scheme, e.g.
allocating a variable to a register for the life of a procedure, the
information-can be easily estimated with reasonable accuracy, If
the information has to be gathered from an ifl-structured
assembly program, the information will be pessimistic. Of course,
IN can be arbitrarily enlarged to make gathering this information
easicr; however, large IN sets will limit the effectiveness of the
optimizations.

Code motion

There are three major schemes for dealing with delayed branches,
All three try to move useful instructions to the n positions after
the branch instruction. They differ in the location from which
they move the code and in the kind of improvement gained.
These three schemes are:
1. Move n instructions from before the branch to after the
branch,

2. Duplicate the first # instructions from t* and branch to the
instruction at t* +n instead.

3. Move the next n scquential instructions to immediately
alter the branch.

All movement of code is subject to the general requirement that
there cannot be another branch instruction in the n instructions
following a branch instruction. The sdditional requirements for
each of the scliemes are shown in Table 2.
The restrictions on the resources in IN(BJ) for the basic block B,
which was not choosen guarantec that this optimization does not
change the meaning of the program. Only resources which are
“dead” outside of this basic block can be modified by
optimiations2and 3.

The effect of optimization 1 is a simple movement of the branch
instruction. No no-aps have to be inserted, and only useful
instructions are exccuted, whether or not the branch is taken. This
is an improvement in time and space over the default solution, the
inscrtion of no-ops. In optimization scheme 2, the duplication of
instructions does not reduce the size of the program over the no-
op solution. However, exccution of the code scgment will be
shortecned by 2 cycles if the branch is taken. The third
optimization will always reduce the size, and will reduce the
exccution lime by n cycles whenever the branch Is nof taken,

Obviously, the first optimization is the most desirable, The
relative advantages of optimizations 2 and 3 depend on the
objectives of the optimization and on the dynamic properties of
the program. If a branch instruction is taken k times and not
taken { times, optimization 2 saves n * & cycles. Oplimization 3
will save n * I cycles and n units of storage. Compilers which are
mainly concerned with the size of the object program might favor
the third optimization. If speed is important, optimization 2 is
supcrior for all £ > For loop-type branches, the relation k 2> ¢
almost always holds; a large percentage of the branches executed
in a program will be loop-type branches. The value of 2 is small
1-3) for current processor implementations; hence, the storage
savings of optimization 3 will not be great

Not all the optimizations arc possible for all branch types as the
requirements cannot always be fulfilled. Unconditional branches
don't cause any problems in practice. Unconditional branches do
not depend on the preceding instructions. Therefore the delay
time can be fully utilized unless there are less than » instructions
preceding the unconditional branch,

The branch instructions from groups 3 and 4 arc the most
problematic. For group 3 (the trap instructions) t* is unknown,
so we may have to assume that IN(t*) is the set of all possibl.
registers, Of course, most trap routincs will use a standard entry

fnstructions from t* and
braich (o instruction
t* + ninstead.

change any register R‘ In
IN(t) or alfect memory.

The moved-instructions cannot

3 Move the next 2 sequential
Instructions to right
after the branch.

t-and IN(t*) must be known,
'The moved instruciions cannot
change any register R, in IN(LY)
or alfect memory,

Cptimization Reguirements Improvement
1 Move ninstructions from Always possible, but Time
before the branch till after the branch canuot depend on the Space
the branch, moved instructions.
2 Duplicate the first n t* and IN(1") must be known. Time - only whea

bronch s taken

Spacc
Time - only when
branch is not taken

‘Table 2: Requirements for optimization
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sequence and the compiler could compute a smaller value of IN
from that sequence. Likewise, the return instructions from group
4 usually employ a standard linkage convention, so that we can
restrict the sct IN(L*) to some small subset.  Furthermore, there
are normally bookkeeping chores associated with procedure entry
and exit, ‘The stack pointer and/or the frame pointer iight have
to be recomputed and registers may have to be saved. These
actions can be accomplished during the branch delay time in a
well designed calling convention. In such cses, the branch
optimizer should not attempt to rcorder the code scquence,

The algorithm

The handling of delayed branches is done on a basic block basis
but requircs the use of the global information about future uscs of
the registers. We utilize basic blocks which have no jumps into
them, if the basic block contains a jump, it must be the last
instruction in the block,

Our algorithm recognizes the useful properties of unconditional
branches and handles them accordingly. Other types of branch
instructions are ureated as follows: our algorithin begins by
attempting optimization 1. If moving instructions {rom before
the branch instruction to (the locations) directly after the branch
instruction (optimization 1) moves # instructions, then no further
consideration is necessary and the next basic block is processed. If
this strategy moves only k < n instructions then optimizations 2
and/or 3 are used to further impiove the code.

In cases where optimizations 2 and 3 arc both possible, attempts
10 use optimizations 2 and 3 must be ordered. The decision would
be easicr if we had some knowledge about the miss ratio of the
branch, i.c. the number of times the branch is not taken over the
number of times the branch is exccuted, There is an appealing
heuristic that has been confirmed by numerous studies of
program behavior assume that backwards-going branches will be
taken. Backwards-zoing branches are almost always loop
branches (they always are in a structured program), and loop
branches arc almost always taken. Several studies have shown that
forward-going branches are taken or not taken with alimost equal
probability. Hence, opumization 3 should be preferred for
forward-going branches berause it saves both time and space.

Next we give the steps for processing a basic block. We assume
that any other optimizations arc complete and the shape of the
block is determined.
1. Read in the basic block. If the basic block does not end with
a branch_instruction, leave the block unchauged and
proceed to the next basic block. Otherwise determine », the
length of the branch delay, and obtain the st IN(B) for this
basic block.

2 Try to move n instructions from before the branch
instruction to afier the branch instsuction.
3.If step 2 moved only & with & < a iustructions, move n-k
instructions from somcwhere clse:
@ Il only onc location, cithcr t* or (" is known, move

"

instructions from this location,

@ If both t* and t are¢ known, pick one of them and
move instructions from there. Cuerently, if t* before
-the branch location (i.c. the branch is backward), t* is
choscn. For forward branches, € is selected.
Whenever instructions are moved, make sure that they
don’t cffect memory or any register which is in IN(B) for
the basic block By which was nor chosen,

4. Modify the branch-target if step 3 moved k instructions
from t* so that t* points to k instructions afler the original
target.

There is an additional reason for chosing scheme 2 for a
backwards branch: the code at the branch target has already been
analyzed and processcd. Thus, instructions which can be moved
are already available and only a single pass is needed,

Optimization cost

This algorithm checks each instruction of a basic block at most
once during step 2. It starts with the instructions directly before
the branch instruction and then gocs on to the preceding
instructions until n instructions are found or the basic block has
been completcly checked. Most of the moved instructions come
from the end of a basic block: a practical improvement would
restrict the scarch to the last / instructions. Howevcr, this is not
done in the present implementation. Step 3 requires checking of
additional instructions. Here at most n instructions will .be
considered per basic block. The search for movable instructions
stops when an instruction violates the requirements in Table 2;
any remaining slots are filled with no-ops,

In the worst casc the time to process a basic block is proportional
to the sum of jts length and 2 * n, Since the number of basic
blocks in a program is a lincar function. of the number of
branches, the processing tme for the entire program is
O(Number of instructions + Branch count * n). or linear ia the
program length, This result compares favorably to the estimate of
the resources needed (o implement a hardware based approach?.

implementation

We have implemented a compiling system and optimizer for
MIPS (Microprocessor without Interlocked Pipe Stages) an
ongoing, cxperimental VLSI processor project!!,  Currently,
compilers for Pascal, Tortran, and C exist. These compilers
geacrate machine-language fevel instructions that iguore the
effects of delayed branches, There is a branch optimizer that
implements the lechnique described above; it also provides
several other functions, such as limited instruction collapsing and
compensation for resource interlocks.



MIPS Instructions

The original design for the MIPS architecture envisioned a
branch delay of two for all control flow instructions. The high
frequincy of branch instructions in the output of the code
generators motivated a redesign; now only those branches which
involve a reference to memory have a branch detay of two. All
other branches have a delay of one (see table 3).

Group Delay
branch (pc relative) 1
jmp direct (absolute) 1
jrap via register 1
branch conditional 1
jmp indirect 2

Table 3: MIPS branch instructions

Effectiveness of the optimization

Tables 4 and 5 give results for some sample programs. They have
been gathered by the branch optimizer and an instruction level
simulator of MIPS. The optimizer also perforins other functions,
like instruction reordering and limited instruction packing. The
effects of these operations are not considered here.

Space

Table 4 is a table of empirical results for static data. It shows the
number of branches for each program and the percentage of no-
ops that are removed after branches. For example, Puzzle 1
contains 124 branch instructions, With a branch delay of n, the
124 X n no-ops have to be-inserted when no optimization is done.
The optimization is able to rcorder the code to usc 52.4% of these
instruction locations for a delayed branch of one and 47.6% of the
locations for a branch delay of two, The test programs consist of
1. Fibonacci, a recursive implementation of computing 2
Fibonacci number,

2. Hanoi, an implementation of thc "Towers of Hanoi"

4. Puzzle I, I, and U1, three versions of the infameous Puzzle
benchmark!? that recursively solves a cube packing
problem; the versions differ in their use of register variables
{employed in versions IT and If1) and their treatment of
arrays: versions I and Il access array elements by indices,
version 11T has been transformed to exploit advantages of
the addressing mechanisms,

Time

11 1d a, ro 1 ida, 18
21 mov #0, r13 1 moy #0, ri3
31 ble r6, M3, LI 1 bls r8. r13, L2
4 1 no-op b3 b #1, e12
8 23 Li:sudb #1, r12 23 L2:st r12, 3(sp)
¢ 23 st r12, 3(sp) 2 st r13, 2(9p)
T 2 st r13, 2(sp) 23 Jsr foo
8 23 jsr foo 23 storepc 1(2p)
9 23 storepc 1(sp) 23 st r0, ‘a(r1d)
10 23 st r0, n(r1d) 23 add M, 13
11 23 add ”n, r13 23 bgy 8, r13, L2
12 23 bgt r8, r13, L2 23 sub M1, ri2
13 23 no-op 1 1a:..,.
14 1 L3:....

(2) (v

Figure 2: Example for time saving

Figure 2 shows an example. All branch instructions have a
branch delay of 1. The execution of the code scgment shown in
figure 2.a requircs 211 cycles; this does not include time spent in
thd subroutine. Note that the procedure returns to the location
following the storepc instruction.

‘The reordered instructions are shown in figure 2b, As the first
branch is forward, instructions from t~ are chosen. R12 cannot be
in IN(B) for the basic block starting at label L3; this register will
be decremented regardless of the outcome of the test in line 3.
This optimization reduces the size of the object program, The
next branch (in line 11 of figure 2.b) is backward and instructions
from t* are selected. The first instruction from (* is duplicated
and placed dircctly after the branch instruction. Note that the
target of the branch has to be adjusted: the new target is the
second instruction of the block, labeled here for clanity L2, The

~ reordered version requires 188 cycles to exccute, which is an

improvement of approximately 10 %,
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problein,
3. Queens, a program which positions 8 queens on a chess
board.
Progran Instruction Branch % Instructions sftos vsay for delay
Hang coynt insyructiony 1 2 2 4 [}

¢ Fibonace! 44 10 90.0 5,0 68.8 45.0 3.0

Hanod 52 7 3.7 80.0 ' 3.0 32.1 28.8

paczle I 809 W7 95.0 1.9 7.2 67.8 ’.0

Puzzle It 580 1 78.9 86.6 48.9 4.4 3.2

Puzzie II1 829 13 01.0 1.2 .8 83.3 0.2

Quoons 142 29 96.8 2.4 9.7 82.8 4.8

‘Tahle 4: Static improvements after branch optimization



Program Name Branch delay Reduction in

wrilized _Space Time
Fibonacel 75.0 % 13.7 % 10.2 %
Hano{ 65.6 % 9.6 % 1.7 %
Puzzle I 956.0 % 13.2 % 10.4.%
Puzzle II 13.2 % 18.0 % 16.6 %
Puzzie XII 96.6 % 13.5 % 19.1 %
Queens 87.6 % 149% . 9.8%

Table5: Dynamic improvements after branch optimization
Compiler Interaction

Register Allocation

We assume in this paper that the register allocation is done
outside the branch optimizer, Therefore, the final results
obtainable in this two phase scheme may be less than optimal,

The code generator heavily influences the availability of movable -

instructions. In Figure 3.a no instructions will be moved from
before the branch to a location behind it. Figure 3.b shows a
different register assignment that allows the first two instructions
to be moved.

1d x, r2 d x, rt
add  rz2, ro add  ri, ro
14 y. r2 1d Yy, r2
brero r2, anywhere bzaro r2, anywhers

{(2) 1))

Figure 3: Register assignment

Unfortunalely, the use of a large number of registers also has an
adverse effect on code motion. As the sct IN(B) becomes large, it
inhibits the movement of instructions in step 3 of the algorithm.

Loops

There are two major schemes to translate high-level loop
constructs into machine instructions shown in Figure 4. The first
scheme uses a tes: at the beginning and tranches to this test after
execution of the loop body. The altcrnative approach tests the
condition ufter each iteration at the cnd of the loop body. This
scheine cither tests the condition once at the start or branches to
the test at the end of the loop to determine whether the loop is
executed 0 times.

The choice has a high impact on the quality of the reordering.
There are two reasons why the second scheme is superior to the
first.
1 1t exccutcs one branch instruction less per iteration. In
pipcfined machines, this will result in substantially faster
exccution, especially for short loaps.

2. No instructions from i* can be moved hehind the branch in
the first scheme if the test instruction is the first instruction
at t*. ‘lhis resuiction is a consequence of the general
requircement that two branches be separated by the branch
delay instructions.

e

One might argue that an unconditional branch at the end of a
basic block does not incur any penally. Unconditional branches
have the nice property that the preceding instructions don't
influcnce the branch. Step 2 of the outlined “algorithm can
therefore move n instructions [rom before the branch to a
location behind it, Butif the basic block is shot, there will not be
sufficient instructions to move. :

Ly

Test Loop
Condition Branch to Teax
Loop Bady Loop Body
Branch to Test Yost Loop
Condition
(@) ()

Figure 4: Loop constructs

The first version of the C compiler treated loops according to
scheme 1 as shown in fligure 4. A modified version translated
foops differently and used the sceond scheme; it also eliminated
branch chains, Table § shows the improvement gained from this
change. Cotumn A shuws the spced-up over the first strategy: Le.
testing the loop at the bottom of a loop reduces the execution
time of Fibonacci by 14.0%. Column B shows the improvements
obteincd by branch optimization for these programs when
compared to the default solution, the inscrtion of no-ops. This
column dermonstrates the total speed-up obtainable.

Program Name Reduction of execution time

A [}
Fibonacc! 14.0 % 22.7 %
Hanot 8.2 % 1.8 %
Puzzle I 8.3 % 15.1 %
Purxzlo 11 9.2 % FL I
purxle II 1m.%x .7 2
Quean 9.1 % 18.0 %

Table 6: Dynamic improvements after loop modification




Table 7 shows the contribution of the indivdual optimizations; it
refers to the optimizations in Table 2. Fach column gives the
percentage of no-ops renioved,

Name - % No-ops removed by .
Optl Opt2 Opt3 TJotal .
Fibonacci §50.0 v.0 25.0 15.¢
Hanol 25.0 0.0 60.0 75.0
Puzzle I 4.4 34.7 15.9 95.1
Puzzle II 48.8 15.2 2z.8 86 8
Puzzle III 47.9 3.7 4. 97.2
Queens 35.2 8.8 8.1 82.3

Table 7: Contribution of optimizations
Conclusion

Compiler technology can be used to enhance the design of
computer instruction sets, to provide higher performance from
those instruction sets, and to allow the implementation of
schemes with substantially iess hardware complexitly. Branch
delay climination is an example of a technique that is becoming
increasingly inportant in new architectures.
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1 Purpose of the Project

This project implements a PLA minimizer uslnx a novel Jook-ahead heuristic. 1‘he minlmlw ﬁnds .
minimal cover for an input PLA. ,

-,

2 Problem Statement and Terminology

[Note: Until section 4, we will discuss the case of single-output functions.)
Consider a Boolean function f, in sum-of-products form. We can write f in PLA jbrmal repmcnnng
each product term as a line with its st element equal to
0 if the ¢t literal appears in that term in complemented form
1 if the st Jiteral appears in that term in uncomplemented form
2 ifthe it literal does not appear in that term

Example
f = z,ﬁ:;Vz;z'.E. .

- In PLA format this becoms:_
121 .
110

A cube is product term. We say a cube ¢ is a prime implicant of a Boolean function f if it is a maximal
cube of f. (For example, changing any 0 or 1 to a 2 in a prime implicant will result in a cube that has
some intersection with f.) A set of cubes is a cover (not to be confused with the verb "cover”) for a
function if the two are the same for every assignment of values to the literals. A cover C of f is minimal
if it is an irredundant cover of prime implicants of f. By irredundant we mean that striking out any cube
of C will lcave a set of cubes that fail to cover some part of f. Given a function in PLA format (in a
more general multi-output form discussed in section 4), these codes output a minimal over for the PLA.

Example
J = abévabeVabe

In PLA format, this is:
010
011
110

A minimal cover for f is:
002
210

3 Architecture and Implementation

Note: Subroutine names appcar in small boldface type.

‘These codes (Appendix 1), implemented in C on a VAX 11/780 at Stanford, are stored in
‘o /elsi/Zlah/PROGPROYJ. The file OVERVIEW.GRY (Appendix 1) lists the subroutine hierarchy.,

Best Available Cop, 2



3.1 Mcthod: Top Level waln submal dothings

We first get a (possibly redundant) cover of prime implicants. Then we eliminate redundant cubes
and thus have a minimal cover.

This final climination (irredundant_cover) is straight-forward. We loop through the cubes and, for each
cube, sce if it is covered by the union of all the other cubes in the function. If it is, we immediately
throw it out of our fanction. Clearly, the final output of this stage is still a cover of the_function (since
we only threw out cubes that were covered by what remained). Also, the output is certainly irredundant.
Suppnse that an output cube ¢ was redundant. When we were looping through the cubes and got to ¢,
all the cubes in the output were there (and possibly some more). Thus, at that time ¢ was also redundant
and would have bcen thrown out. '

Now, let us discuss the important part of the algorithm: finding a cover of prime implicants (do—things).
The crucial (though obvious) obscrvation is: :

Obscrvation Let j be a NDC (non-don't-care: a 0 or a 1) position of a cube ¢.
Suppose that ¢ raised in position 7 is not covered by f. Then for any cube d,
¢ C d, d raised in position j is not covercd by f.

Proof Obvious. By assumption there is some minterm (a product term of all 0's
and 1's) such that that minterm, m, complemented in position j is not in f. Since
¢ C d, m is in d, so raising d in position j will give us the same non-f min-term
as before. Thus, d raised in position j can not be covered by /. :
Suppose we try and fail to raisc a cube in some position 7 and then go on to successfully raise it in other
positions. The obscrvation above tells us that we still can not raise position j. Thus, our routing for the
“raising to primality” stage is: )

Mark all NDC positions in the PLA "active"”
while (there are still active positions) -
beg .
choose an active position p and mark it "not active”
/* supposc that p is the j'h position of cube 1 */
if (cube 1 complemented in position j is covered by the PLA)
raise position 7 of cubet toa 2
end

Anx ordering of the active positions will give us a cover of prime implicants. However, we would of
course like an “intelligent™ ordering that helps us contain and climinate cubes as cffectively as possible
:::t? if this adds some bookkecping work to-our algorithm. Such a scheme is described in the nex€

on.

In summary, the top-level flow is:
beg '

Initialize

Get a cover of prime implicants

Make the cover irredundant
end

3.2 The Lock-Ahead Heuristic

Suppose we have a function. Recall that our goal is to contain as many cubes as possible. Thus, a
reasonable way of choosing a position to raisc might be to first try raising the position that is "nearest”

3



to letting our cube cover other cubes. This is the idea behind the "look-ahead” heuristic. More exactly,
at any time we raise the untried 0 or 1 that will let our cube contain as many cubes as possible if
the raising succeeds. If more than one position is chosen by the previous rule, we try raising the

one of these that will also bring us one “possible” raise away from covering as many more cubes as
possidblc. 1f there is still more than onc candidate, we break the tie by looking at distance three coverings,
etc. By a “possible” raise, we simply mean a raise that we have not already tried and failed on.

Example
Consider the function

000

001

010

011

100 :
The most desirable position under the look-ahead heuristic would be the leftmost position of the fou

(counting 0 to 4) cube, since this is one away from covering one cube (cube zero) and two away from
covering two cubes (cubes one and two) and three away from covering one cube (cube three). Tied for

next best are the middle position of cube two and the rightmost position of cube one.

3.3 Implementation, Data Structures

3.3.1 The PLA

The array p contains the PLA, in PLA format (section 4), Henceforth, we assume that-the PLA has
H rows and W columns. _ '

The Boolean “active positions” matrix implied in section 3.1 is a. a[¢][s] is true iff position 5 of cube
1 is active: it is a 0 or a 1 that we have not yet tried raising. '

3.3.2 The Scoring Matrices

To choose the next active position under the look-ahead heuristic might intuitively seem tn be very
expensive. (A mindless implementation costs O(H 2W?) per choice for a total cost over all choices of
O(H3W3).) However, by keeping various partial results, and carefully updating them as the minimization

proceeds, we can implement this more efficiently. (Essentially O(HW) per choice. Total cost over all

choices O(H*W?). See section 3.4 for more details on the time cost)

The crucial matrix that we will "use” is the Boolean (note: we assume 0 = "false” and 1 = “true™)
matrix b (for “bit-wise containments"). b[¢][;}{k] is true iff cube k fails to cover cube ¢ in position j.
Though b was keot explicitly in early versions of this code, it has now been removed. A reference to b
is implemented s a simple function, bits, that checks the appropriate two clements of p. This approach

is a clear win. The time cost is the same ( constant per reference to b). The space savings are dramaticl

b was of size J/2W. With b climinated, thc biggest arrays that arc left are of size max(J/W,H?). Thus,
wc can minimize much larger PLAs.
Let

ap s Wel v
Tli)l] = 2 pmo BLENIFILI] |
That is, 7[i][7] ("row sums”) is the number of positions that kecp cube 7 from covering cube <.

Let f[4][5] be true iff cither i = j or cube j fails to cover cubic ¢ in some position where we have
tricd and failed to raise j. That is, f[¢][{j] = true tells us it is impossible for cube j-ever to cover cube
i, except cubes are forbidden to cover themselves. f[i][j] = false says nothing cither way. f ("forget
about possible containments”) is of size HxH.

e o e ®



The “score” matrix will hold a value for cach active position. The position with the largest entry in
the score matrix will be the next position to be chosen by the look-ahead heuristic. The double precision
score matrix is defined by (recall Booleans are 0-1):

sfilla) = (eilli) =y GG — JIH1H)

k=0 (originalH + 1)rI*

Note that A is the current PLA size and originalH was the original PLA size.

Crucially, we only use this nasty formula to initialize the score matrix, From then on, every time we
do something (raise a position, fail to raise a position, contain a cube) that will cffect the scoring matrices,
we make whatever small changes are needed (section 3.3.3). _

The score formula looks imposing, but it is really quite simple. The “originalH + 1" simply imposes
a radix system on the scoring, with the dominant weightings going to the "close™ cubes of section 3.2.

Example

Continuing the example of 3.2, the score.of the leftmost position of cube four is initially 1%(1/6) +
2*(1/36) + 1*(1/216) and the middle position of cube two and the rightmost positinn of cube one each
score 1%(1/6) + 2*(1/36).

3.3.3 Implementation of the Look-Ahead Heuristic do—failed do_—no_.cover do.-we_cover compress _

3.3.3.1 Failed Raisings dofailed

Suppose we have just tried raising position <z, 7> and have failed. Well, we may now suddenly know
that cube 7 can never cover some other cubes (the ones that it now fails to cover in position j). Besides
basic bookkeeping (a[t][7] = 0; s[s]{j] = 0) this is

for each cube k other that ¢ _
if (¢ does not cover k in position 5) and (we did not already know that ¢ could never cover k)
beg
note that ¢ can never cover k
for each [ so that position <z, !> is active
if b{k][{][¢] then s[s][!] = sli]ll] ~ Grmmamsymm
end

3.3.3.2 Successful Raisings do_raise

_ There are two types of effects that successfully raising a position may have. First, things that used
to cover our cube in the raised part may no longer do so. Secondly, the raised part may cover the
corresponding parts of other cubes, Indeed we may even contain (section 3.3.3.3) other cubes.

Let us consider the effect of other cubes no longer covering our cube (do-no_cover). Suppose the posi-
tion that we have just raised is <y, £>. Then each cube which used to cover cube y in position z and no
longer does may have its scores changed.

for each cube ¢ that used to cover cube y in position z but no-longer does
beg
increment the row sum 7{y][g] /* i.e. it fails in one more position */
if we don't alrcady know that it is impossible for cube g to cover cube y and <q, > is not active
beg
note that it is impossible for cube g to ever cover cube y
for each column j except z if b[y]{s](g] then

5



slq][j] = 8[q1[j] - (on‘gt‘nall‘l‘il)’hlld‘l
end )
else if we don’t already know that it is impossible for cube g to cover cube y and <q, z> is active
beg
for each column j except z if b[y] [51la)
’(q"]] = '[q]b] + (ongmclﬂ+l)'('lﬂ (origincl"il)'(ﬂﬁl-l

3[‘1][3] - ’[q][z] + (,",‘...uf.g.;)rhlhl
end

end
Finally, there is the effect of position <y, > possibly covering new cubes (do_we_.cover):

for each cube n that cube y used not to cover in position z but now does
beg
decrement the row sum r[n]y)
if we do not already know that it is impossible for cube y to cover cube n
beg
/* remaining oncs carry greater weight */
for each column j except z if b[n][J][y] and position <y, 3> is active

s [y] [J] = 8{!/] [J] + (oﬂym.lH+ 1)y [lle] (”‘l"‘“"‘“)ﬂ;u'r
end '
end

‘ ' 3.3.3.3 Contained Cubes compress

Finally, we come to the question of how to find and deal with contained cubes. Containment can
only happen after a successful raising (say of position <y,x>). Any scores that have been boosted by not
covering parts of a soon-to-be-destroyed cube must be decreased.
for0 <d < Hd # py do

if cube d is contained by cube y /* r[d][y] is 0 */
beg
for cubes 1 except p and d do
if we do not alrcady know it is impossible for cube s to cover cube d
for cach position j with (b[d][]][t) and <, > active) do
ofilld) = sld][s] - (m,m.mu)vmm
destroy cube d
end '

3.3.4 Implementation of Peripheral Functions covers tautology

3.3.4.1 Covers

Suppose we are given a cube ¢ (with d twos) and a function f. We wish to know if the cube is
covered (contained by) the function. Our approach will be to convert this question to a question ol
tautology. In particular, consider restricting all lines of f that intersect ¢ to the don't care positions of e.
(This is the restriction of ,f to ¢.) Simply ask if this restriction covers e. That is, is it a tautology (cqual

® t0 {0, 1}).




Example

c = 2120
I =1110
1201
0220

Lines zero and three of f intersect ¢. Thus, ¢ is covered by f iff the following is equivalent to 22 (it isn’t):

11
02

3.3.4.2 Tautology

Suppose we are given a function f (of dimensionality d), and we want to see if it is a tautology.
We begin by checking .for various trivial cases that will give us a quick answer. Then we use a counting
‘argument fo try to get a quick answer, Count the number of minterms (0 dimensional cubes) contained in
each cube of f (this is 2number of twos in this cube y 5n4 add these numbers. This gives an upper bound
on the number of minterms in f (the figure is exact when the cubes of f are disjoint). We can immediately
conclude that f is not a tautology if the upper bound is less than the the size of {0, 1}¢ (which is 2¢), For
example

02
11
has a count of three so it certainly can not covcr 22 which has four mmterms.

If these techniques do not give us an answer, we want to reduce this d-dimensional tautology question
to two (d — 1)-dimensional tautology questions. There are a number of heuristics that we could use
to choose which of the d-dimensions we will split on. One way would be to try having almost equal
number of cubes in each of the subproblems. We use a slightly more interesting method. Split on
the dimension (say column j5) which makes the sum of the number of cubes in the two subproblems
minimum (that is, the column with the fewest twos). Split by putting all cubes with a 0 or a 2 in column
7 into one subproblem and cubes with a 1 or 2 in column j into the second subproblem (and eliminate
column 7 in both subproblems). A very useful th‘ng that we do is to solve the smaller subproblem
first. If this subproblem is not a tautology, then we can return the fact that f is not a tautology
without even solving the larger subproblem. Otherwise, return the solution to the larger subproblem,

Example
: f =012

201

112

We split on the mnddle column and ask the tautology question for 21 which fails by vertex counting,
Thus [ is not a tautology.

3.3.5 Error Checking

The program contains extensive debugging and internal consistency checks. These come in thrce
flavors, which are turned on and off by a switch line in the input file.

The variable dbg controls the printing of extensive debugging Information that shows the flow and
actions of the program. This switch should be left off by the average user.

Morec interesting is dbgerr. This turns on checks within the program for impossible situations, If
one occurs, the routine panic is called to tell the uscr what error has been cncountered and given him the
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option of bailing out. The checks turned on be dbgerr are not expensive, so it should be left on by most
users. Needless to say, the amusing message printed by panic should never be seen by any user.

Finally, the variable RS turns on some very extensive error checking: after each attempted raise,
the values for all the scoring matrices (except a) are recomputed from the PLA and compared with the
values currently in the matrices ( audit). This assures us that the complex score adjustment algorithms are
correct. This was extremely useful in debuggmg the program, as errors were spotted as soon as they were
introduced. However, this check is very expensive and should be left off by most users.

The exact method of specifying these variables is described in section 4.

3.4 Time Costs

3.4.1 Look-Ahead Time Costs

It is immecdiate from the algorithms in 3.3.3.1 and 3.3.3.2 that a successful or failed raising costs
O(HW) to choose the part and maintain the scoring matrices, excluding the cost for containing cubes.
At most HW positions are checked for raising, so the total cost is O([{*W?). The cost of containing
k cubes is O(kHW). Each cube can only be contained once during the course of the algorithm, so the
total cost of containment adjustments is O(H2W). Thus, the total cost over the run of the algorithm of

_the look-ahead heuristic is O(H*W?).

3.4.2 Covering Time Costs

The covering/tautology costs are trickier. The worst case costs of our implementation are exponential
in the number of input columns of the PLA ( the non-tautology question is NP-complete). However, in
practise the covering question can usually be quickly answered. When the answer is no, all we have to do
is find some part of the off-set (or reduce to some problem that vertex counting can answer). When the
answer is yes, our search usually cuts off quickly since we can quit with a line of twos (and our splitting
heuristic tries to preserve twos and split away ones and zeros).

4 Multiple Outputs / Input Format: Using the Code

In real PLAs, ‘we also have an output plane. This corresponds to having a number of Booléan

functions, which we allow to share product terms. We simply set the i@ element of the output
plane of cube 5 to 1 if the product term.j appears in function i, apd we set it to 0 otherwise.

Example
fi = 2123Vz 222,

[z = 2122VZ, 2223
Ja=2,2V212;

in PLA format this becomes:
121 101
110 110
112 011



The look-ahead heuristic is unchanged, except we must remember that, in the output parts, 1 covers
anything and 0 covers 0'but not 1. The covering and tautology extensions are straightforward. In covering,
we restrict our tautology check (and our selection of intersecting cubes) to the output columns that are
on in the given cube. In tautology we just modify the basis cases. (If some output component is included
in no cube of the function, we can quit right away, etc.)

The input to the function is a file containing a PLA in the multi-output format described above, starting
on its third line. The Tirst line should contain three integers. First, the number of rows in the PLA. Second,
the number of input columns. And finally, the number of output columns. The second line should contain,
in order, the debugging switches dbg, dbgerr, and IRS of section 3.3.5. A 1 means the variable is on (true)
and a zero means it is off (false). The suggested second line is 0 1 0. Thus a simple input file might look
like: '

432
010
110 10
112 11
121 11
010 01

Blanks vithin lines are ignored. The output file is of exactly the same format as the input file!
To run the minimizer, simply type “gry fl1 f2" in the directory where the codes reside (SHASTA:
/visi/lah/PROGPROYJ). ﬂ is the input file and f2 is the name of the output file. (Dcfaults are "mput.pla"
and "output.pla”".)

5 Test Run Descriptions

Appendix 2 contains script files of program sessions. There is a set of "simple" runs that minimize
trivial PLAs, and a set of "sample” runs that minimize less trivial PLAs. Run times are included with
each run. The profiled runs "auditoff" and “auditon” show how our implementation of the look-ahead
heuristic (it takes 40% of the runtime) compares with the straight-forward implementation (where it takes
85% of the much longer runtime). .

6 Comments and Conclisions

As it is exiremely expensive to find minimum PLAs, we are motivated to find "good" PLAs. These
codes guarantee to find a minimal cover for any input PLA, and use a powerful look-ahead heuristic to
try to find a gnod minimal cover. The space cost.is low, O(max(H ?, HW)). The time cost is low enough
to allow minimization of very large PLAs.

7 Citations and Acknowledgments

This project was written during my research assistantship in Professor Ullman's VLSI group.

The only previous treatment of a look-ahead heuristic for PLA minimization that T know of is 4
Comparison of Logic Minimization Strategies Using ESPRESSO: An APL Program Fackage for Partitioned
Logic Mininalization, by Prayton, Hachtel, Hemachandra, Newton, and Sangiovanni-Vincentelli, to ap-
pear in the Proc. of IEEE Intl. Conf. on Circuits and Computers, May, 1982, Rome. This paper discusses
an implementation of the look-ahead heuristic in a "Iocal” sense. That is, we choose some ordering of



the cubes in our function, and then g0 through the cubes in thi
implicant by using the look
. implementing a "global”

s order. Each cube is raised to a prime
-ahead heuristic to choose the ordering of its parts, We also mentioned that

look-ahead heuristic was an area in which future effort should be focused.
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Abstract

(IS is a new single chip VLSI microprocessor. It attempts to
meve high performance with the use of a simplificd instruction
«t. similar to those found in microengines. The processor is a fast
aimelined engine without pipeline interlocks. Software solutions
w <everal traditional hardware problems, such as providing
apeting interlocks, are used.

Introduction

MIPS (Microprocessor without Interlocked Pipe Stages) is a new
coneral purpese  microprocessor architccture designed to be
spiemiented on a single VLST chip. The main goal of the design
~ hizh performance in the execution of compiled code. The
echitecture is experiniental since it is a radical break with the
werd of modern computer architectures. The basic philosophy of
MIPS 15 to present an instruction set that is a compiler-driven
« wosing of the microengine. Thus, little or no decoding is
<oled and the instructions correspond closely to microcode
~wrecions, ‘The processor is pipelined but provides no pipeline
= tech hardware: this function must be provided by software.

)

i MIPS architecture presents the user with a fast machine with

«ply struction set. This approach has been used by the IBM
L progect! and s currently being explored by the RISC project
* Betieley™ it is directly ‘opposed to the approach taken by
andietures such as the VAX, However, there are significant
“ifrceces between the RISC approach and the approach used in
ps:

I The RISC architecture is simple both in the instruction set
and the hardware needed to implement that instruction set,
Aithough the MIPS instruction set has a simple hardware
aplementation (e, it requires a minimal amount of
"rdware control), the user level instruction set is not as
Crughtforward, and the simplicity of the user level
iuction sat iy secondary (0 the pesfermance goals.

S Ite thrust of the 'RISC design is towards cfficient
raplomentation of a straightforward instruction set. In the
MIPS design, high performance from the hardware cugine
S a primary goal, and the microengine is presented to the
¢t.d user with a minimal amount of interpretation. This
rrakes most of the microcngine's parallclism available at the
antruction set level,

2194. 1895/82/0000/0017$00.75 © 1982 IEEE
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3. The RISC project relies on a straightforward instruction set
and straightforward compiler technology. MIPS will require
more sophisticated compiler technology and will gain
significant performance benefits from that technology. The
compiler technology allows a micracode-level instruction
set to appear like a normal instruction sct to both code
generators and assembly language programmers.

The MIPS architccture is closer to the 801 architecture in many
aspects. In both machines the macroinstruction set maps very
directly to the microoperations of the processor. Both processors
may be thought of as architecturés with micro-level user
instruction sets. Microcode is created by compilers and code
generators as it is neceded to implement complex operations. The
primary differences lic in various architectural choices about
pipeline design, registers, opcodes and in the attempt in the MIPS
instruction set to make all the microengine parallclism available at
the user instruction sct level. Thesc attempts are most visible
within MIPS in the following ways: the two-part memory/ALU

~ and ALU/ALU instructions, the explicit pipeline interlocks, and

the conditional jump instructions.

MIPS is designed for high performance. To allow the user to get
maximum perfurmance, the complexity of individual instructions
is minimized. This allows the cxceution of these instructions at
significantly higher speeds. To take advantage of simpler
hardware and an instruction set that easily maps to the
microinstruction sct, additional compiler-type translition is
necded. This compiler technology makes a compact and time-
efficient mapping between higher level constructs and the
simplificd instruction set. The shilling of the complexity from the
hardware to the software has several major advantages:
® The complexity is paid for only once during compilation.
When a usct runs his program on a complex architecture,
he pays the cost of the architectural overhead cach time he
runs his program,

® [t allows the concentration of cnergies on the software,
rather than constructing a complex hardware engine, which
is hard to design, debug, and cfTiciently utilize. Soflware is
not nccessarily easicr (o construct, but the VLSI envi-
ronment makes hardware simplicity important.

‘The design of a high perforinance VL.SI processor is dramatically

affected by Uic technology. Among tie most important dasign
considerations are: the cffect of pin limitations, available silicon



arca, and size/speed tradeolfs. Pin limitations force the carveful
dusign of a scheme lor multiplexing the available pins, especially
when data and instruction fetches are overlapped.  Area
limitations and the speed of off-chip intercommunication require
choices between on- and ofT-chip functions as wel! as limiting the
complete on-chip design. With current state-of-the-art technology
cither some vital component of the processor (such as memory
manageraent) must be off-chip, or the size of the chip will make
both its performance and yields unacceptably low. Choosing what
functions are migrated off-chip must be done carefully so that the
petformance effects of the partitioning are minimized. In some
cases, through careful design, the effects may be eliminated at
some extra cost for high speed off-chip functions.

Specd/complexity/arca tradeoffs are perhaps the most important
and difficult phenomena to deal with, Additional on-chip
functionality requires more area, which also slows down the
performance of every other function. “This occurs for two equally
important rcasons: additional contro! and decoding logic in-
creascs the length of the critical path (by increasing the number of
aclive ¢lements in the path) and cach additional function
increases the length of internal wire delays. In the processor’s data
path these wire delays can be substantial, since thy accumulate
both from bus delays, which occur when the data path is
lengthed, and control delays, which occur when the decoding and
control is expanded or when the data path is widened, In the
MIPS architecture we have attempted to control these delays;
however, they remain a dominant factor in determining the speed
of the processor.

The microarchitecture

Design philosophy

The fastest exceution of a task on a microengine would be onc in
which all resources of the microengine were used at a 100% duty
cycle performing a nonrcdundant and algorithmically efficient
encoding of the task. The MIPS microengine attempts to achieve
this goal. The user instruction set is an encoding of the
microengine that makes a maximum amount of the microengine
available. ‘This goal motivated many of the design decisions
found in the architecture.

MIPS is a load/store architecture, i.e. data may be operated on
only when it is in a register and only load/store instructions access
mcmory. If data opcrands are used repeatedly in a basic block of
codc, having thein in registers will prevent redundant load/stores
and redundant addressing calculations; this allows higher
throughput since more operations directly rclated to the
computation can be performed. The only addressing modes
supported are immediate, based with offsct, indexed, or base
shifted. These addressing modes may require fields from the
instruction itself, general rogisters, and one ALU or shifter
operation. Another ALU operation available in the fourth stage
of cvery instruction can be used for a (possibly unrelated)
computation, Another major benefit derived from the load/store
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architecture is simplicity of the pipelinc structure. ‘The simplified
structure has a fixed number of pipestages, cach of the same
length. Because, the stages can be used in varying (but related)
ways, piplinc utilization improves. Also, the sbsence of
synchronization between stages of the pipe, increases the
performance of the pipeline and simplifics the hardware. The
simplificd pipeline eases the handling of both interrupts and page
faults.

Although MIPS is a pipclined processor it does not have
hardware pipeline interlocks. This approach is often scen in low
and medium performance microengines. MIPS five stage pipeline
contains three active instructions at any time; cither the odd or
even pipestages are active. The major pipestages and their tasks
are shown in Table 1.’ :

Table 1: Major pipestages and their functions

Stage
Instruction Fetch IF

Mnemonic Tagk
Send out the PC,
increment it

Instruction Decode ID Decode instruction

Operand Decode o0 Compute affective
wddress and send to
wemory 1f load or
store, use ALY

Cporand Store/ 03/ Store: write operand/

Execution EX fxecution: use ALY

Operand Fetch oF toad: read oparand

Interlocks that are required because of dependencies brought out

by pipelining are nos provided by the hardware. Instead, these
interlocks must be staticalty provided where they arc needed by a
pipeline reorganizer. This has two benefits:

1. A more rcgular and faster hardware implementation is
possible since it docs not have the usual complexily
associated with a pipclined machine. Ilardware interlocks
cause small delays lor all instnictions, rcgardless of their
relationship on other instructions. Also, interlock hardware
tends to be very complex and nonregular® 4. ‘The fack of
such hardware is especially important for VLSI implemen-
tations, where regularity and simplicity is important,

2. Rcamanging operations at compile time is better than
delaying them at run time. With a good pipeline
reorganizer, most cases where interlocks are avoidable
should be found and taken advantage of. This results in
performance better than a comparable machine with
hardware interlocks, since usage of resources will not be
detayed. In cascs where this is not dcetected or is not
possible, no-ops must be inserted into the code. This does
not slow down cxecution compared to a similar machine
with hardware jaterlocks, but does increase code size. The
shifting of work 10 a rcorganizer would be a disadvantage if
it took excessive amounts of computation. It appears this is
nct a problem for our first reorganizer.

In the MIPS pipeline resource usage is permanently allocated to



varlous pipe stages. Rather than having pipcline stages compete
for the use of resourees through qucucs or priority schemes, the
machine's resources are dedicated to specific stages so that they
are 100% ulilized. (n Figure 1, the allocation of resources o

. Individual pipe stages is shown, When concurrently executing
~plpe stages are overlayed, all avaitable resources can be used.

Figure 1: Resource Allocation by Pipestage

Resource Allocation by Pipestage
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To achicve 100% utitization primitive opcrations in the micre-
engine (c.g.. load/store, ALLU operations) musc be completely
packed into macroinstructions. This is not possible (cr three
reasons:
L Dependencics can prevent full usage of the microengine,
for exampls when a sequence of register loads must be done
before an ALU operation or when no-ops must be inscrted.

2 An encoding that preserved all the panaticlism (ie, the
microcontrol word itsell) would be too large. This is not
serious  problem since many of the possible micro
instructions are not uscful.

3. The encoding of the microengine prescnted in the instrue-
tion sct sacrifices some functional specification for itnmed-
bate data. In the worst case, space in the instruction word
used for loading large immediate vilues tikes up the space
normally used for a base register, displacement, and ALU
operation specification. In this case the memory interface
and ALU can aut be used duting the pipe stage for which
they are dedicated.

Nevertheless, fist  rosults on  microengine  utilization are
encouraping. Many instructions fully utilize the nuijor resources
of the machine. Other instructions, such as lo.ad immediate which
use few of the resources of the nuachine, would mandate greatly
Inctvased control coiplexity if overlapy with surrounding instrucs
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tions was aitempted in an irregular fashion,

MIPS has once instruction size, and ail instruciions exceute in the
mme amount of time (onc data memoary cycle). This choice
simplifics the construction of code gencrators for the architecture
{by climinating many nonobvious code sequences for diffcrent
functions) and makes the construction of & synchronous regular
pipcline much casier. Additionaily, the fact that cach macroine
struction is a single microinstruction of fixed length and execution
time m2ans that & minimum amount of internal state is nceded in
the processor. The abscnce of this internal state eads to a faster
processor and minimizes the difficulty of supporting interrupts
and page faults.

Resources of the microengine

The major fuactional components of the microcngine include:
® ALU resources: A high speed, 32-bit carry lookahcad ALU
with hardware support for multiply and divide: and a barrel
shifter with byte inscrt and extract capablitics, Only one of
the ALU resources is usable at a ime. Thus within the class
of ALU rcsources, functional units can not be fally used
even when the class itself is used 100%.

@ Internal bus resources: Two 32-bit bidircctional busses,
cach connccting almost ail functional compronents.

@ On chip storage: Sixteen 32-dit gencral . purpose registers.

® Memory resources: Two memory interfaces, one for
instructions and onc for data. Each of the parts of the
memory resource can be 100% utilized (subject to packing
and instruction space usage) because cither one store or
load form data memory-and one instruction fetch can occur
simuitancously.

® A muitistage PC unit: An incremeatable current PC with
storage of on2 brauch target as well as four previous PC
vatucs. These are required by the pipclining of instructions
and interupt and cxception handling,

The Instruction set

All MIPS instructivns are 32-bits. The user instruction sct is a
compilcr-based cncoding of the micromachine.  Stalic and
dynamic instruction sct ciliciency, as determined by a code
generator, is used to decide what micromuchine features to
encode into macroinstructions in the architecture, Multiple
simple (and possibly unrelated) instruction pivecs are packed
togethier into an instruction word. ‘The baxic instruction picecs
are:

1. ALU picees - these instructions are all register/register (2
and 3 operand formuis), They all use fess than 172 of an
instruction word.  lucluded in this category are byle
Insert/extract, two bit Booths mulipty step, and one bit
nonrestoring divide sep, as well as sandand ALU and
Jogical opcratioas,

2 Load/store picces - these instructions toad and  store



memory operands, They use between 16 and 32 bits of an
instruction word. When a load instruction is less than 32
bits, it may be packaged with an ALU instruction, which is
executed during the Executivn stage of the pipeline.

3. Control flow picces - these include direct jumps and
conrpare instructions with relative jumps. MIPS does not
have condition codes, but includes a rick collection of set
conditivnally and compire and jump instructions. The sct
conditional instructions provide a powerful implerasntation
for conditional cxpressions. They set a reglster to all 1’s or
0's based on one of 16 possible comparisons done during
the operand decode stage. During the Fxecution stage an
AL operation is available for logical operations with other
booleans. Thz2 compare and jump instructions are direct
encodings of the micromachine: the operand decode stage
computes the address of the branch target and the
Excrution cycle does the comparison. All branch instruc-
tions have a delay in their eftect of one instruction; ie., the
next sequential instruction is always executed.

4, Other instructions - include procedure and interrupt
finkage. The procedurs linkage instructions also fit easily
into the micromachine format of ctfective address calcu-
lation and register-register computation instructions.

MIPS is a word-addressed machine, This provides sevcral major
perfermance advaniages over a byte addressed architecture. First,
the use of word addressing simplifies the memory interface since
extraction and insertion hardware is not needed. This is
particularly important, since instmction and data fetch/store are
in a critical path. Sccond, when byte data (characters) can be
handled in word blocks, the computation is much more efficient.
Last, the effectiveness of short offsets from buase register is
multiplicd by a factor of four.

MIPS does nat directly support floating point arithmetic. For
applications where such computations are infrequent, floating
point operations implemented with integer operations and field
insertion/extraction sequences should be sufficient.  For more
intensive applications a numeric co-processor similar to the Intel
8087 would be appropriate.

Systems issues

The key systems issues are the memory system, and internal iraps
and external interrupt support,

The memory system

The use of memory mapping hardware (off chip in the surrent
design) is needed to support virtual memory. Modern micro-
processors (Motorola 68000) are aiready faced with the problem
that the sum of the memory access time and the memory mapping
time is too long to allow the processor to mn at full speed. This
problem is compounded in MIPS; the effect of pipelining is that a
single instruction/data memery must provide access at
approximately twice the normat rate (for 64k RAMS).
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‘The solution we have chosen ta this problem is to sepamte the

data and instruction memory systems. Separation of program and
data is a regular practice on many machincs; in the MIPS system;
it allows us to significantly increese periormance. Another benefi
of the separation is that it allows the use of a cache only for
instructions. Because the instruciion memory can be treated as
read-only memory (except wher: a program is being loaded), the
cache contro} is simple. The use of an instruction cache atlows
increased performance by providing mare time Aduring the criticat
instruction decode pipe stage.

Faults and interrupts

The MIPS architecture will support page faults, oxternglly
generated interrupts, and internally gencrated traps (arithmetie
overflow). The necessary hardware to handle such things in a
pipelined architecture usually large and complex® 4, Further
more, this is an arca wheic the lack of sufficient hardware support
makes the construction of systems software impossible. However,
because the MIPS instruction set is not interpceted by &
microengine (with its own state), hardware support for page faulis
and interrupts is significantly simplified.

To handle interrupts and page faults correctly, two important
properties are required. First, the architectur: must ensure correct
shutdown of the pipe, without executing any f2ulted instructions
{such as the instruction which page faulted). Most present
microprocessurs ¢an not perform this function enrtrectly {e.g.
Motorola 63000, Zilog Z3000, and the Intel 8086). Sccond, the
processor must be able to correctly restore the pipe and continue
execution a3 if the interrupt or fault had not occurred.

These problems are significantly eased in MIPS because of the
location of writes within the pipe stages. In MIPS all instructio...
which can page fault do not write to any storage, either registers
or tnemory, before the fault is detected. The occurrence of a page
fault nezd only turn off writes generated by ihis and any
instructions foilowing it which are alrcady in the pipe. These
following instructions also have not written to any storage before
the fauit occurs, The instruction preceding the faulting
instruction is guarantecd to be exccutable or to fault in ¢
restartable manner cven after the instruction following it faults.
The pipeline is drained and contiol is transferred to a general
purpose cxception handler. To correctly restart execution three
instructions need to be reexecuted. A multistage PC tracks these
instructions and aids in correctly executing them,

Software issues

The two major components of the MIPS software system are
compilers and pipeline reorganizers. The input to a pipeline
reorganizer is a sequence of simple MIPS instructions or
instruction picces generated without taking the pipeline interlocks
and instruction packing features into account This relieves the
compiler from the task of dealing with the restrictions that are
imposed by the pipeline constraints on logat codie sequences. The
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reorgalzer reorders the instructions to make maximuny use of the
']pclino while enfurcing the pipcling interlocks in the code. It also
pecks the instruction pieces to maximiic use of each fnstruction
word  Lastly, the pip:line reorganizer handles the effes: of
beanch delays. ‘This seflware is an important part of the MIPS
architecture. It is responsible for making the low-level
microarchitecure into a usable and comprehensible instruction
st Sinoe the exact details of pipeline intzrlocks and branch
detays may change between implementations, the architecture is
sctually defined by the input to the pipcline reorganizer, .
Since all instructions exccute in thie same time, and most
fstructions generated by & code gencerator will not be full MIPS
structioe sct, the instruction packing can be very effective in
reducing exccution time. In fully packed instructions, ¢.g. a kad
combined with an ALU instruciion, all the major processor
resources (both memory interfaces, the alu. busscs and control
Jogic) are uscd 100% of the time.
The basic oplimiation techniques applicd to the code sequences
are

L reorder instruction sequences to remove pipeline interlocks,

2 pack together instruction picces into a single MIPS

instructior: )

3. remove the cffects of delayed branches
In some cases it may be nccessary to insert no-ops to prevest
fllegal pipcline interactions or to accomodate delayed branches.
Also, pieces of instructions may be lefl blark whenever no piece
ks available to pack with the instiuction.

The reorganization problem is discussed in detail in another
paperS; the problem is showa to be NP-complete and a sct of
heuristic solutions is proposed. The reorganization algorithm is
essentially an instruction scheduling algorithm. The basic algo-
rithm: i

1 Read in the program in assembly language and create a dag
indicating precedence scheduling relationships antong the
instructions.

1 Determine which groups of instructions can be scheduled
for exccution next and eliminate the others.

3. Heuristically choose an instruction to shedule from the
exccutable instructions. Attemipt to choose an instruction
that can be packed with the last instruction executed and
that will allow the rest of the code to be scheduled with a
minimum nuniber of no-ops.

The reorganization problem is made difTicult but the potential

‘presence of overlapping resource utilization in parallel code

streams. This overlap muwst be detected before scheduling of
cither stream occurs; once it is detected. a deadlock state where
ncither stream can be scheduled for exeeution is avoidable, ‘these
reorganization techniques (without the instruction packing) can
oblain performance improvements of $-10% over code that must
wait for completion of a previmly dependent instruction. ‘The
use of instruction packing increases the relative effectiveness of
this reorganisation,
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e optimization of delaycd branches s the conirol fow
conterpant of code rorgantzation.  Qur algorithm for braach
delay optimization cxamines the targels of the branch in aa
atiempt to obtain useful instructions to exceute. dyring b diay
time. The branch delay algorithm$ can obtain space’ and tmg
improvements in the range of 10-30A for the MiPS brasch
instructions.’

.. Present ht'at.uu and concluzions

The entire MIPS processor has peen aid cut and partitioned .1a
a set of six test chips that cover all the daia path and convni
functions on the chip. Four test chips have Bera sent out e
iubrization as of Augus: 1982: we expect send the remainder to
fabrication during August 1582,

In the software arca, code generators hav~ been written for bt
C and Pascal. These code gencrators produte simple instruct.ng,
relying on a pipcline réomanizcr. A complete version of e
pipeline reoranizer is runring. An instruction leve! simulater is
being used to obtain performance estimates.

Figure 2 shows the tloorplan of the chip. The dimensions of “ve
chip are approximatcly 6.9 by 7.2 mm with & minimum fezore
size of 4 p (i.e. A = 2 p). The chip area is heavily dedicated to e
data path as opposcd to control structure, but not as mdically 13
in RISC implementation. Early cstimates of performance secre. 1o
indicate that we should achicve approximately 2 MIPS (using e
Puzzle program’ as a henchmark) compared 1o other architect; ts
executing compiler gencrated code. We expect to have mere
accurate and complcte benchmarks available in'the ncar future.

Figure 2: MIPS Floorplan
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both processors. The MIPS numbers are a close approximation of
our cxpected performance,
Motoroln §8000  MIPS

Tronsistor Count 85,000 25,00
Cinck speed 8 MHx 8 MHz
Data path width 16 bits 32 bits
@ Static Instruction Count 1300 847
Static Instruction Oytes 5360 2588
Execution Tinme (sec) 28.8 8.5
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for those with no experience programming in C. Experienced C
users can start with section 11.

January 27, 1982

This paper is a working document of the Stanford University Electrical Engincer-
ing Department. Distribution or redistribution outside of the Stanford working
cornmunity without prior permission of the authors is prohibited.

(c) The Board of Trustees o!f Leland Stanford Junior University



Testing Chips using ICITST Version 2.5

John Newdkirk, Rob Mathews, and /rane Watson: language design
John Newkirk, Irane Walson, and Doug Boyle: compiler
Rob Mathews, Irang Walson, and Wayne Wolf: tutorial

Informalion Systems Laboratory
Stanford University
VL3I File f012782

1. Minimal C

C shares many comrnon characteristics with the Algol-like and Pascal-like
languages. The user familiar with Pascal should pick up the elements of C
quickly. Readers familiar only with FORTRAN are to be pitied for their lack of
worldliness, but their main difficulty should be in absorbing the more robust
control structures offered by C. However, a few caveatls are in order for all neo-
phytes: .

. Case is always significant — Foo is not cquivalent to foo. Reserved
words in the language are expected to be in lower case.

. There arc no procedures in C, only functions. Any procedure may
roturn a value. However, it need not return a value, and the value
returned by a function can be ignored.

. There is no general notion of scope, as there is in Pascal. The only
scopes are global and within a function. Functions cannot be defined
within functions.

1. Asimple program

C programs are simply colleclions of functions. The main program body is
defined by a function called main. The function definition consists of two parts.
First, there is the function name, followed by the list of parameters in
parenthesas (the parentheses must be present even if there are no arguments),
and a decclaration of the types of the parameters. Then comes the function
block, which declares the local variables and the actions to be taken by the
function. The functions may be declared in any order in the program file, but it
is wise Lo keep them in some logical order.

Consider this program:

/7* This s a comment; commaenils do not nest ¥/
main ()

int i, anawer;

for (i = 1,1 != 11, i = i+1) /* compute n! for n=1,..,10 */
{ /* Here begins a cornpound statement */ )
answer = factorial (i);
wastetime (),

!
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int /¢ factorial returns an integer value '/
factorial (argt)
int argl; /¢ ids argument is an integer */

inl i, n; /* variables local to the function */

/¢ Gompute (arg1)! by iteration; 0! = 1 */

n=1, '

/¢ for (initial value; continuation condition; increment) */
for (i = 1; i <= argl; i = i+1)

n = n%;

return (n); /* Return a the result */

{

wastetime () /* has no parameters, returns nothing */

int i, counter;
/* waste time by counting from I to 1000 */
for (i = 1; i <= 1000; i = i+1);

The astute reader will note that this program has been rendered unin-
teresting by the lack of input or output. This situation will be remedied soon;
meanwhile, consider several other characteristics of the program. First, integer
variables, 32 bits long, are declared by the int statement. This is the type most
useful for ICTEST programs.

Second, the value to be returned by a function is indicated by the state-
ment

return (value);

where value can be any expression. Also, since factorial returns a value, it must
have a function type. If the function type is not specified, it is assumed to be
int. (The function type specification precedes the function name.) Wastetime,
on the other hand, does not need to return a value, so it does not use the return
sltatement, and its call looks much like a procedure call in other languages.

Third, compound statements are made using { and {. Although all simple
statements musl be terminated by a semicolon, compound statements need no
such punctuation.

Fourth, although it is not obvious from this example, all function arguments
in C are value parameters. Their value for the caller cannot be changed by the
callee. C has a mechanism for allowing reference parameters that can be
changed by the callee, but it is error-prone and rather baroque. For the pur-
poses of ICTEST, returning a single value with refurn should be sufficient.

Finally, there is the for loop. This is one of several control staternents avail-
able in C. Control structures are the next topic of discussion.

2. logical expressions and conlrol structures
There are three control structures of interest: the for-loop, the while-loop,
and the if-then-clse statement. Fach evaluates an expression, and depending on
its value, may exccute a statement (which can also be a compound statement).
Fxpressions can be used to compare variables and constants, much as ycu
would expect. The comparison and logical operators are:
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less than

greater than

less Lthan or equal to
greater than or equal to
equal to

not equal to

HVAVA

AR TR

R
&

logical and
logical or
logical not

Note that the equality operator is ==. This is often confused with =, the assign-
ment operator. However, C allows assignment operations within comparison
expressions. Therefore, if you use = when you meant ==, the C compiler will
probably not complain. This mistake is a common source of infinite loops for
beginning C programmers.

The for loop was demonstrated in the sample program. The general form is

for (initialization; while—condition; incremecnt)
action;

Before the loop starts, the inijtialization statement is executed. Then the condi-
tion is tested, and if it is true the action is performed. After the action the
increment statement is executed, and the program loops back to retest the con-
dition. Unlike FORTRAN, and like Pascal, a for loop can execute zero times if the
loop variable is initialized to a value that does not satisfy the condition.

The for loop is best understood as a special case of the while loop. C
expands the for loop into this while statement.:
initialization;
while (condition)
action;
jncrement;

J

This has the obvious interpretation: while the condition is true, the statement
(or compound statement) following is executed.

The final control slatement is the if-then statement. It can be written with
or without an else clause:

if (condition)
statement;

if (condition)

slatement,;
elsc

statement,;

This statement again has the obvious interpretation. However, the if-then-elsa
syntax difTers from Pascal: if the if action is a single statement, there must be a
semicolon between it and Lhe else clause. This is because the semicolonin Cis a
stalement terminator, not a slatement separatlor as in Pascal.
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3. Arrays _

C also allows arrays of one or more dimensions. The declaration for a one-
dimensional array of eight integers and a 4 by 5, two-dimensional array of
integers is

int a[8], b['_l][5]:

The lower bound of an array is fixed at zero, sc the elements of a are numbered
0.1,...,7. There is no bounds checking on array indices, so be sure the index is
always in the proper range. Also, due to the parameter passing mechanism of C,
arrays are an exception to the call-by-value rule. Array paramnecters can be
modified by the callee (actually because C passes a pointer to the first element
of the array). A function cannot normally return an array unless it is passed in
to it. As a rule, stick to one-dimensional arrays where possible; there arc some
tricky intricacies involving higher-dimensional ones.

4. Macro preprocessing

C programs are passed through a macro preprocessor before they are com-
piled. The preprocessor performs a number’ of useful functions: for instance,
since C does not have constants in the language definition, the preprocessor can
be used to substitute constant values for their names. The three most used
features of the preprocessor are define, include, and ifdef /endif.

Define allows the definition of a pseudonym for a string. For example,
#define GOO 23

will replace all instances of GOO with the string 23 in all lines after the definition.
The # marks the line as a preprocessor command, and must be in the first
column. Case is significant in the preprocessor, as it is in C; it is traditional for
program constants Lo be entirely capitalized. Constant definition is the pre-
valent use of define, but almost any string replacement can be made.

#define begin |
#define end |

could be used to make Lhe Pascal programmer more at home, but don't use it ~
why exacerbate your typing chores.

Include performs file substitution, The command:
#include "standard.h"

will cause the preprocessor to insert the text of the file standard.h before the
next line in the source. Included files may conlain include statements, but the
recursion cannot continue indefinitely.

Include is particularly handy for informalion that is common between
several program files. Only one copy of the dala is necessary, and when it is
updated all programs thal point to it by include will receive the update. The
extension ".h" is conventional for such header files. They should contain only
definitions, dala structures, and lype declarations, not. C code — separate com-
pilalion and loading cxists for the latter purpose, unlike in Pascal.

Ifdef allows condilional compilation. lf-then and if-then-else conditionals
arc possible. The threce commands used are:



#ifdef identifier
#elsc
fendif

Ifdef checks whether the identifier has been defined in a previous define macro.
If so, the source lines between else (if present) and endif are ignored. If the
identifier has not been defined source lines between the ifdef and else or endif,
whichever comes first, are ighored. The usual method of using ifdef is to define
the different conditions with names and head the source file with a dejine macro
that sets the desired condition name to have a nonzero value.

5. Input and output

Finally, we come to 1/0. 1/0 procedures in C are implemented as standard
procedures and macro definitions. A program using the 1/0 package must
include the preprocessor command

#include <stdio.h>

before any 170 calls are made. (Pointy brackets enclosing a flle name indicates
the file is in a system library known to the preprocessor.) This call can always be
included without cost.

The simplest 170 functions to use are printf for output and scanf for input.
The form for both functions is:

printf (command-string, argument, argument, ...);
scanf (command-string, argument, argument, ...);

The arguments are the values to be printed or input. Arguments to printf are
value parameters, and therefore may be arbitrary expressions. The comrnand
string is much hke a format statement in FORTRAN: it is a literal string with
embedded commands showing the position and type of variables to be printed.
Integers are the main item of interest for ICTEST, which are described by %d. An
example command string for printf is:

"The values range from %d to Z%d\n"

When Lthe output is performed, the first %d is replaced by the value of the first
argument in the printf call and the second 7%d is replaced by the value of the
second argument. The \n indicates a magic characler, as in the editor; in this
case it is a newline. Printf does not output newlines unless requested to by the
\n. The other useful magic character is \t, a tab. The prinlf call using this
command slring might be

printf ("The values range from %d to %d\n", variable1*6, i);

Printf performs no checking to insure that the argument type agrecs with the
type specified in the command string, nor does it check to sce if the number of
arguments cquals the number of values required by the command string.
Bewarec.

Scanf uses Lhe command string to indicale the format of the input
requested. Inpul of two free-format integers can be accomplished by

scanf ("7%d %d", &variublet, &i);

The expression "&variablel” means “address of variablel"”, passing such a
pointer Lo variablel allows sconf to set the value of variablel, circumventing C's

-



usual call-by-value semantics.

8. Bit hacking

Since ICTEST programs exercise chips that understand only bit streams, it is
sometimes useful to manipulate integers as bit vectors. There are scveral C
opcrators defined on integers:

& bitwise and

| bilwise or

-~ bitwise exclusive or
<< left shift

>> right shift

~ one's complement

Avoid the temptation to use these operators in a manner dependent on the
machine word length. Also, the effect on Lthe sign bit of right shift is undefined in
the language; on the VAX, it extends the sign bit.

7. Lint

Lint is a command that examines C source programs to detect a nurnber of
bugs and obscurities. It enforces the type rules of C more strictly than the C
compiler. [int accepts multiple input files and library specifications, and
checks them for consislency. Suppose there are two C source files, filel.c and
Jile2.c, which are ordinarily compiled and loaded together. Then the command

lint filel.c fileR.c

produces messages describing inconsistencies and inefliciencies in the pro-
grams. The command

lint -p filel.c file2.c

will produce, in addition to Lthe above messages, additional messages about vari-
ous error-prone or wasteful constructions that, strictly speaking, are not bugs.

. ICTEST

The purpose of ICTEST is to provide an algorithmic environment for testing
integrated circuits and Lo free the designer from dealing directly with bil vec-
tors. The designer specifies the stimulus to a circuit and its expected response.
He then compiles the ICTEST test description and uses it to exercise either a
simulation of his design or an aclual part.

An ICTEST program has 2 major parts: declarations of /Qports, and the test
procedurcs themselves. An 10port describes a logical connection to the circuit
to be tested, including the physical pins or simulator nodes and the timing and
data formatting involved. The Lest procedures manipulate the 10port driving
and sensing values, and ICTEST converts these commands inlo the sequence of
0's and 1's necessary for the actual test.

ICTEST is lailored for testing two-phase, synchronous designs. It gencrates
the clocking automatically, and it recognizes the two-phase timing types, e.g.,
valid phil. This tutorial will concentrate on such tesling, although ICTEST can
cope with unclocked or asynchronous designs as well.

Keywords in ICTFST arc shown in boldface. “'PPin" is used gencrically to refer
either Lo a pin on an IC or a node in a simulation.



1. Declaring 10ports

ICTEST exercises the circuit through 10ports. For testing physical chips,
these refer to pins or groups of pins; for simulaling, they can refer to any elec-
trical node. The 10port declaration defines the port name, the data format it
expecls, and the liming required to drive or read it. The general form of this

statement is:

secrial { Isb } length

msb
. . stable :
{;{l‘ ‘:’J‘tJI()name {“g‘.’u"h} scgs{t:!ss%}lcngth by width {[ \g:ll‘i;j‘l ][g}}; ,i,]]
parallel width

I0Oname is the port name, width is the number of pins it has, and langth indi-
cates the number of consecutive clock cycles required to transfer a value to or
from the port. Serial implies a width of one; parallel implies a length of one.
Finally, the clocking phrase declares the timing type of the port.

Here are two sample 10port declarations:

input Datair activelo parallel 5 stable phil,
output Dataout serial lsb 24 stable phi2;

Conventionally, the first letter of a I0port name is capfalized to make it easy to
distinguish from a C variable. Datain is a 5-bit. input port, accepting values from
-16 to +15, whose values are stable p,. It uses negative logic. Dataout is a serial
porl producing a 1-bit-wide, 24-bit-long bit stream, least significant bit first, with
values stable gz When Dataout is read, the ICTEST will automatically count out
the 24 clock cycles necessary to read the porl and convert the result into an
integer.

il a group of pins operates as a three-state port, the group must be defined
with two 10port declarations: one to declare its input characteristics and one to
declare its output characteristics. Both ports are then bonded to the same pins
(see below).

A qualified clock 10port (qual timing type) produces a single clock pulse
when requested to output a 1. Normal input ports latch their values; qualified
clock ports do not.

A segmented 10port is simply a serial port more than 1 bit wide. For exam-

ple,
inpul Segsin scgs msb 4 by § valid phit;

declares a porl 5 pins wide and 4 time periods long, for a total of 20 bits of data.
Msb indicates that the most significant segment is presented first. Data is valid

on ¢,.

2. Dceclaring a clock
Normally, you will declare a clock 10port:

activelo |,
clock /Oname { nil ]

e.g.,
clock Clock;
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ok (not the same as clock) is the port name. It Qock has 2 pins associated
with it (sec below), ICTEST generales a 2-phase, non-overlapping clock signal to
drive it. A 1-pin clock port is assumed to define p, only.

3. 10ports and physical reality

The bond statement associates pins with 10ports. It must precede the first
I0port declaration. It is the one part of the program inherently tied to the tar-
getl system: for physical chip testing it relates pin numbers and 1Oports, while
for simulatlors it relates node numbers to 10ports.

A bond statement for a tester targel contains the number of pins on the
chip package, the number of pins in the tester socket, and a list of IOport names
and their associated pins. The bonding declaration for the 10port in the previous
section might be:

bo;xd pkg 40 socket 40
PDatain = 3-5,12~11;

Dataout = 2;
Clock = 8,9;
vdd = 1;
Gnd = §;

!

The pkg and socket informalion must be present for tester targets, and absent
for simulator targets. Datain consists of the 5 pins 3, 4, 5, 12, and 11, where 3 is
the most significant (sign) and 11 the least significant bit; Dataout consists of
the single pin 2. Since Clock has 2 pins, ICTEST will generate a 2-phase clock.

Wdd and Gnd are the pre-defined power and ground inpul ports. They must
be bonded in the last two clauses in the bond statement. Either of these ports
may conlain any number of pins. No I0port declarations are required for these
ports.

Pins may be bonded to more than 1 10port, necessary for 3-state pins, and
handy when one port is a subset of another. For example:

tri_in, tri_out = 10-18
parity = 36;
full_data = 11-17, parity;

The bond statement for a simulator target contains a list of 10port names
and their associated nodes. Nodes may be specified as node numbers or as node
names. If node names are specified on the right side of a bonding clause, these
names must appear in your simulator symuyol file, i.e., the .sym file. Size infor-
mation may not follow the word bond.

As far Lester targets, the Vdd and Gnd ports must be bonded in the last two
clauses of the bond statement. The simulator will then drive the power and
ground nodes using information contained in the .sym and circuit description
(.sim) files.

Since it is desirable to use the same program for both simulation and test-
ing of a circuit, and since the bond statemient must be different for these two
types of targels, elever programmers will put Lheir bond statements in separate
files from thie rest of the test program (e.g., in “'bond.sim’ and 'bond.chip’).
The symbol SiM is automatically defined for simulator targets; CHIP, for Lester
targets, so these files may be conditionally included in the ICTEST program:



#ifdel SIM

#include "bond.sim”
#ulsc

#include "bond.chip”
#endif

4. Tesl steps

A test step is an ICTEST operation on a I0port. There are 3 basic types of
test steps: driving an 10port to a value (input to the circuil), sensing and com-
paring the vaiue of a port to an expected value {outpul to the circuit), and sens-
ing and storing the value from an output port (also output to the circuit). As will
be discussed later, there is also an enforced ''NOP", requiring no activity on a
port for a specified number of clock cycles (the pad test step).

All test steps have the format:
I0port(s) operator value(s).

Value (s) may be absolute numbers, variable names, function calls, or C expres-
sions. Expressions must be enclosed within parentheses. Test steps are nor-
mally executed one after another in the order that they appear in tue program
on consecutive clock cycles.

4.1. Drive test step
Driving a port Lo a value is similar to variable assignment:
ICport{s) = value(s);

The 10ports are driven to the value(s). If more than one value is present, the
values (from left to right) are driven to the port in successive clock cycles. If
more than one 10port 1s present, each is driven to the values. Both lists are
comma-separated.

A port can be driven to any value that will fit into its word length. Data is
converled from 2's complement integers into bit vectors and formatted for the
port. Recall that if the port is declared as activelo, the bils are complemented
before being sent to the port. For example,

Datain = 7,
drives the port Datain to the value 7, and:
Datain = 7, 8, 9;

drives il Lo 7, then B, then 9 on successive clock cycles.

4,2. Scnse test step
Sensing the value of a port is equally simple. The format for this test step
is:
10port(s) =? value(s),
The output(s) of the 10port(s) arc compared Lo the data value(s) on the right
side, analogously Lo the corresponding drive step. For example,
Dataout =? convolve(i);

will cause Dalaoul to be rcad and comparced to the value returnecd by
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convolue(i). I the values do not metch, ICTEST produces a diagnostic indicating
the value expected and the value actually read. If Lthe compare is successful, no
message is output.

4.3. Store lest slep
The test step:
10port => storeloc;
senses and stores the value at an output port. Only a single port name and a
single store location (variable name) may be specified.

Storing occurs at the end of a test or subtest, not immediately! Be sure to
read the sections on a sample test program and on literals (coming up) to
understand when you may usefully use lhe stored value. Storeloc may be a
scalar variable or a one-dimensional array element. The variable or array mugt
have been previously declared with a result declaralion:

Tesult storeloc;
For example, a scalar and a 10-entry array could be declared as:

result. ous_value;
result bus_values[10];

and used in a store test step:

Bus_A => bus_values[3];

Result locations are automatically defined to be 32-bit two's complement
integers. Values sensed at lower-precision ports are sign-extended to 32 bits.

The test steps above look very much like C assignment and expression

evaluation statements. They are not. IOports are not variables and cannot be
passed to functions as arguments or used inside expressions.

6. Asample test program

These statements are suflicient to write a test program for a simple chip.
Imagine a chip that takes as input a 16-bit data value, and outputs the square of
the data on the next clock cycle (it uses a good algorithm). An appropriate bond
statement is:

bo?d pkg 40 socket 40 /* only good for a tester */
Datain = 6~10,12,14,16; /* input = */

Squarcout = 25,28-34; /% output z*%2 v/
Clock = 4,i;

Vddin, Vddout = 10;
Gndin, Gndout = 21,1;
Vdd = 10;

Gnd = 21,1;

!

If you wish to sense if power and ground are properly connceted (a good idea),
you must declare ports ( e.g., Widin and Vddout here) and bond them to the
same pins as Vdd and (ind. Vdd and Gnd are spccial ports and may not be
scnsed or driven.
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The 10port declarations are next, followed by the test.program:

input Vddin parullel 1;
oulpul Vddout parullel 1,
inpul Grdin parallel 1,
oulput Gndout parullel 1;
inputl Dulain segs 1sb 2 by 8 stable phil; /* The data is read and wrilten */
:lulpkutCSqT(areout. scgs Isb 2 by 8 stable phi2; /* as 2 bdytes, lsbyte first */
oc lock;

Vi
¢ test() is aluways the main program, <stdiv.h> is fincluded automatically
v/
tes;t()
int §;
7* powar and ground connections ars checked here */
Vddout = 0; vdd = ? 1; Vddout = 1;
Gndout = 1; Gndout = ? 0; Gndoul = 0,

/7" first test a subset of the possible input */
for (i = 1; i != 65; i++
Datain = i; /* inpul the data to the port */
Squareoul =? square(i); /* function square defined below */

7¢* now let the user specify an assortment of numbers, ending with 0 */
while ((i = getnum()) != 0)

Datain = i
Squareout =? square(i);

int
getnum()
int i, nscanned;
printf ("number to test? ");
nscanned = scanf ("7d" &n) 7* read the number to square */
; relurn (nscanned = 21 0)
int
square(n)
int n;

return (n*n);

In this program, getnum is called to get values to place into the test vector.
When the user types a zero (or anything else that scanf rejects), getnum returns
0, Lthe while loop exits, and the test completes. The test is then run, and any
miscompares from the scnse test steps are displayed.

Note that ICTEST automatically formats the data for the secgmented input
and outpul ports and, since a clock is declared, makes the clock tick at the
right times to communicate with the chip. Recall Lhal the /ntain and Sgquarceout
I0ports arc segmented 16-bit ports, formatted as Lwo 8-bit byles in two consccu-
tive clock cycles.
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The following activity will occur during the first 9 clock cycles of the
program's first loop. ''—'' indicales no activity for that port during that clock
phase; however, remember that input valucs persist until new values are

assigned.
[Clock Cycle | o] 2 Datain Squaraout |
0 1 ¢] - -~
0 | 1 11(sbseg) -
1 1 0 -~ -
0 ! 1 | 1(msbsep) =
2 1] 0 - -~
0 1 - -
3 1 0 - -
0 1 - 1 (Isb seg)
4 1 0 - -
0 1 1 2 (Isb seg) 1 {msb seg)
5 1 0 - -
0 | 1 | 2(msbhsen) =
6 1 0] - -
0 1 - -~
7 1 0 - -
0 1 — 4 (Isb seg)
8 1 0 - -
0 1 - 4 (msb sep)

6. Compound test sleps and concurrency

The statements presented so far have their limitations. For instance, there
is as yet no way to present simultaneously data and a ready signal to the circuit.

To control concurrency, you may group test steps. Such a compound test
slep defines a testing contez!, an environment with such attributes as sequential
or concurrent test step execution and generation or non-generation of two-
phase clocking. When the fest() function is entered, clocking is on if a clock is
declared, and cxecution is sequenlial. Thereafter, whenever a new compound
test step is entered, the context attributes are stacked. Completing a com-
pound test step gencrates a return to the previous context environment.

There are 2 types of compound tesl steps, concurrent and sequential. Ina
concurrent cormpound test step, all test steps are started simultaneously:

([ test steps and other C statements ]]
In a sequential compound test step, the test steps are executed sequentially:
{§ test steps and other C stalements }}

Compound test steps may be nested, allowing very complex control and sensing.
For example, using 2 pairs of sequential brackels inside a pair. of concurrent
brackets resulls in 2 test sequences starting simultaneously and exccuting con-
currently.
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The default clocking is whatever prevails in the surrounding context. How-
ever, a leading clocking phrase can Lurn clocking on or off;

clocked [& /°® clocked regardless... ¢/ ]f
unclocked || 7* unclocked regardless... */ ]]

Any ICTEST function, not only test(). may contain test steps. Such function
is called a test function. Unfortunately, when a test function is called, a new
conlext is not crcated. Therefore, if a test [unction is called from within a con-
current context, its test steps will be concurrent; if from a sequential context,
sequential. You probably do not intend such a resuit! The safest approach is to
include all test steps in any function within a compound test step; that way the
context is explicit.

Use relurn and goto statements carefully within testing contexts. In partic-
ular, control must flow out the end of the context if the previous context is to be
recovered. For example, never nest a return statement inside a compound test
step within a test function.

7. Time {rames and offsets

A tesl vector describes actions on all pins for a series of time frames. Ina
clocked context, a clock cycle covers 2 time frames, 1 per phase. In an
unclocked context, the equivalent of 1 clock cycle is 1 time frame. If a serial,
length 4, input port were referenced in an unclocked context, the port would be
driven for 4 consecutive time frames. In a clocked context, the same port would
see new data every second time frame over B time frames (i.e., over 4 clock
cycles, with driving during the correct phase).

The execution of a test step in a compound test step can be relocated in
time by using an offset label. The offsel label is a nurnber or expression in
parentheses followed by a double colon, preceding a test step. The test step is
delayed by that amount from when it would have occurred were no offsel label
present. For example, if you want to reset the circuit and then, after 79 clock
cycles have passed, check the output of the randem number generator, you
could write:

{t
Reset = 1;
Reset = O;
79:: Random =? ran_gen(seed);

i

Reset goes high on the first clock cycle of the sequence and low on the second
clock cycle; then, after 79 idle cycles (the third through B81st), the result is
checked. Equivalently, you might write:

[
ff Reset = 1; Reset = 0; ||
]]81:: Random =? ran_gen(seed);

or perhaps:
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i
resetchip();

81:: Random =? ran_gen(sced);

1]

resetchip()
{t

Reset = 1;
Reset = 0;

i
J

An expression can also be used as an offset label, as long as it is surrounded
by parentheses:

(RANSTART-1):: Random =? ran_gen(seed);

The compare will be delayed RANSTART-1 cycles from when it would occur were
the offset label not present.

Currently, offsets may only occur on test steps and test function calls, not
on compound test steps. This restriclion is easy to sidestep, however, by using
test functions like resetchip() above to contain a compound test step that should
be offset. The offset can then be placed on the call Lo such a function.

In an unclocked context, the offset specifies the number cf time frames to
delay the test action.

8. Iteration and pipelining

Prior to examining how pipelining is accomplished in ICTEST, let's lock at an
example that uses iteration but does not involve pipelining. (You should assume
that all I0ports in the examples in this section have been declared as parallel
and that the enclosing context is clocked.) Suppose a new value and a control
flag are input to the circuit every 4 clock cycles. Suppose also that a value is
output every 4 clock cycles, delayed 3 cycles frorn the control flag. You might
write:

f for (i =0, i!=64;, i =i+ 1)

f{ Control = 1,0; {}
Datain = ij;
3:: Datacut =? outfunction(i);

i
i

The loop repeats 3 test steps in a concurrent context. The loop itself is within a
sequential context, which means that each iteration >f the loop execules in
sequence. (If this loop were in a concurrent context, all iterations of the loop
would execute simultancously.) The loop repeats every 4 clock cycles, since the
longest test step ltakes 4 cycles (Lthe output test step includes 3 cycles of delay
and 1 cycle for the oulput).

For cach iteralion of Lhe loop, the (bntrol porl is set to 1 then 0 in the first
2 clock cycles. It remains unchanged from 0 for the third and fourth clock
cycles. The Patain porl is set to i in the first clock cycle and remains
unchanged for the second through fourth clock cyeles. The output is ignored on
the Dataout port until the fourth clock cycle, when il is compared to



outfunction(s).

The sequential brackoels surrounding the test step driving the Control port
are necessary, sinece all actions in a concurrent compound test slep are started
simultancously. Il the sequontial brackets were not present, ICTEST would pro-
duce an error announcing that the user attempted to assign two vaiues to the
gamoe port ol Lthe same Limo.

To force the loop to repeat in more than 4 clock cycles, you must use the
pad test step. Pad steps are NOPs, forcing no aclivity to occur on an 10port for
some number of clock cycles. For example:

Control = pad 6 Ucks

will add b cycles of padding to the last requested operation on the port Control.
(In an unclocked context b time frames of padding would be added.) Similarly,

Control = pad 2;

will pad the control by twice its declared length. Thus, if Control were a serial
port 12 bits long, no operation would be allowed within 24 clock cycles following
the latest activity on Contral. The amount to pad may be any C expression.

This modified loop iterates every six clock cycles:

it _ _
fmil() = 0 it= 84 01 =1+ 1)
{f Control = 1,0, Control = pad 4 Licks; }|
Datain = i,
1 3:: Dataout =? outfunction(i);
i

Now no activity occurs on any of the ports in the fifth and sixth clock cycles of
cach iteration.

Now suppose Lhal the design is pipelined, so that new input data can be
accepted before the previous output is complete. To test such a part com-
pletely requires the use of a pack-ed context. The pack phrase can precede any
compound lest step and, when present, specifies that all test steps within the
conlext are Lo be started as soon as possible without overlapping any test steps
(including pad test sleps) from the previous iteration. Thus, for:

pack [
Imil(i =0, i!'=64 1 =i+ 1)
f§ Control = 1,0 1]

Datain = j;
3:: Dataout =? outfunction(i);

i
i

cach iteration of the loop is 4 clock cycles long and begins 2 clock cycles prior
to completion of the previous iteration. In other words, the loop begins another
iteration cvery 2 clock cycles, and any 2 consecculive iterations of Lthe loop are
overlapped in time by 2 clock cycles. Note that no test steps are actually over-
lapped: no aclivily is specified for Conirol in the third and forth clock cycles of
each iteralion; no activity is specificd for Dnlain in the scecond to fourth clock
cycles; and no activily is specified for Datasuf in Lthe first three clock cycles.
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We can summarize the resulting activily for the first 8 clock cycles in a
‘ table. '~'" indicales no aclivily for that porl during that ¢lock cycle. Datain and
Control are assumed Lo be valid on ¢,

Clock Cycle | Control | Datain Datoout
-0 1 0 -
1 0 - -
2 1 1 -
3 0 — oulfunction(0
4 1 2 -
5 0 - outfunciion(]
6 1 3 -
7 0 ~ outfunction(2)

If the part accepts new data every 3 clock cycles rather than every 2, the
control stream may be padded to reduce the amount of pipelining (with pad or
just with a C): :

pack {{ , )
for (i = 0, i != 64; i = i+1)
{t
Control = 1,0;
Control = pad 1 ticks;
Datain = j;
. 1 3:: Dataout =? outfunction(i);

i

A context is always unpacked unless a pack phrase appears.

9. Litcrals

Literals are commands meant to be passed directly to the simulator or tes-
ter target. The only messages currently of interest are for one of the simulators
(esim or tsim):

{S message; S)
A common example is a simulator inilialization command such as:
{S iu; S

Literals have the side efTfect of dividing a Lest into pieces: to synchronize the
literal-.command with the testing commands, ICTEST must run the test specified
so far, Lhen jssue the literal command. The current test vector is sent Lo the
testing target, the lest is run, the resulls are returned, and the crror messages
(if any) arc printed. Finally, the literal is processed, and a new test vector is
begun. This procedure is used regardless of whether the literal is intended for
Lthe current target.

This side cffecl is useful because ICTEST can only handle a limited-length
test vector. The maximum lenglh depends upon the particular target, and a
longer test will generate the error message “out of tester memory' {(or possibly
“allocation crror' or "‘reallocation error’™). If you gel one of these messages,

. use a literal simulator command (with null contents) Lo chop up the test.



-17-

Literals may not be nested inside a compound test step or inside a function
that is called from within a compound test step. Also, you should not expect
dynamic storage to be preserved while processing a literal — flushing the test
vector takes a long time.

’

10. Printing messages

Printf and all other C1/0 procedures are execuled during the creation of
the currcenl lest vector rather than during the execution of the test itself.
Hence, all printf output occurring during a subtest will precede any ICTEST error
messages. Consequently, ICTEST provides special print routines, eprintf and
mprintf, thatl are synchronized with errors from the test itself.

When a compare error occurs, ICTEST first prints the most recent eprintf
message prior to the sense test step, unless this message has already been
printed. The ICTEST error message is then output. Mprintf messages are always
prinled (m = ruandatory). Eprintf and mprintf are otherwise identical to
printf.

For example,

for‘[[(i =0;i'=64;i =i + 1)

eprint! ("input was %d, expected output was Zd\n", i, i*);
= i;

Y =i

Out =7 i * i

1

will print an eprintf message followed by an error message each time the actual
output does not match the expected output. If you use a printf instead of an
eprintf statement, however, you will get 64 printf messages followed by any
error mmessages detected by the test. If you use an mprintf instead of an eprintf
statement, you will get 64 mprinff messages with any error messages inter-
leaved between them at the point where errors occurred.

11. ICTEST diagnoslics
The error messages output by ICTEST when comparison errors are detected
have the form:

*E binvalue octvalue decvalue  expression
W binwalue octvalue decvalue  filename, linenumber, poriname

“"E' is the expected valuc and ""W' Lhe actual value, displayed in binary, octal,
and decimal. Fxrpression is Lthe right side of the sense Lest step that caused the
crror (suppressed if the cxpression was merely an absolute number). The
Jilename, linenumber, and portnume are self-explanatory.

12. Simulation

To prepare for simulation, you follow exactly the same steps as you would
were you intending Lo use esim/Lisim manually. See esim(1), extract(1), and A
Guide to Design Validation for KE271" by Wayne Wolf for more information. Note
that if you specify node names in your ICIEST bond statement, these names, as
well as the names wdd and gnud, must be defined in your .sym file.

Your ICTEST program should normally begin by initializing the simulator:
§Su; B
Deal with "z nodes unknown'' problems by providing the appropriate argument
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to iu.
Another useful command,

{S* S
drops you into the simulator’s command interpreter. The simulator will prompt
you as usual, and you may issue any simulator commands that seem appropri-
ate, ending with a request to exit the interpreter and continue the test.

13. Tesling
There is no particular magic to using the MINIMAL and MEDIUM testers. See

"The MINIMAL and MEDIUM Testers' by Rob Mathews for more information.

7
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Appendix A —ICTEST Llest veclor display

ICTEST provides a language for describing the stimulus to and expectled
response from a device under test, Logical values are presented to and sensed
on pins; these logical values can be organized as parallel or serial streams of
bits and are typically associated with a specific phase of the clock.

The data array thal contains the test pattern is called a test veclor. Its
widlh is the number of pins for the device, and its length is usually twice the
numbcr of clock cycles in the test (2 phases per clock cycle). Literals are not
reflected in the test vector, since they delimit subtests.

If & compiled ICTEST program is run with the —d option, the test vector is
directed to the Lerminal instcad of the target tester or simulator. This appendix
explains the test vector display.

The display begins with the number of pins under test and the physical pin
numbers, node numbers, or node names as column headings for the test vector.
The vector is organized by 10ports, ordered left to right in the order they appear
in the bonding map. The next line gives the type of each pin:

1 = input, active high i = input, active low

O = output, active high o = output, active low

T = three-state, active high t = three-state, active low
C = ¢, clock, active high ¢ = ¢, clock, active low

D = g3 clock, active high d = ¢, clock, active low

Q = qual ¢, clock, active high q = qual ¢, clock, active low
R = qual ¢; clock, active high r = qual p; clock, active low
V = Vdd
G = Gnd

The test veclor follows. A line of all plus symbols indicates a flush, i.e., the
end of a subtest. All lines (vector rows) between the flush lines are sent to the
target as one vector.

BEach line of the display represents a row of the test vector (a time frame).
The symbols that appear in the vector are defined as follows:

Symbol Meaning e jl
Drive stable input pinto 0

Drive stable input pin to 1

Drive valid input pin to 0

Drive valid input pin to 1

Sense if pinis 0

Sense if pin is 1

Drive ¢lock pin lo 0

Drive clock pin to i

Drive qualified clock pin to 0 for this time frame only
Drive qualified clock pin Lo 1 for this time frame only
Wait until pin is 0

Wait until pinis i

No activily for pin

I’ad — required no aclivity for pin for Lthis time frame
X Iirror — conflicling actions for pin for Lhis Lime frame

ISSCFOOmw<<ca

et
]

0s and 1s are physical, nol logical, valucs al this point, so they will be inverted if
the porl that contlains the pin 1s aclivelo.
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‘ At the end of cach line is error handling information. It permits ICTEST to
reconstruct the original logical value and to issue appropriate error messages.
For cach pin sensed during this vector line, three numbers (separated by com-
mas) and a code will appear to the right of the test vector line:

1) anindex to the relevant prototype error message in the message array fol-
lowing the Lest vector,

2) aunique identifier for this particular value,

3) the bit position in the sensed value of this sense request (the least
significant bit position is numbered zero), and

4) a code that indicates whether this is the final bit of this value and whether
the data is aclive-high or active-low:

Code Meaning
f Final bit, data active-high
space Not final bit, data active-high
F Final bit, data active-low
underbar Not final bit, data active-low

For example, a single test line might be:
~dDcCss—— 0,5,14 0,5,15¢

meaning: the first, eighth, and ninth pins in vector are idle; drive the second pin
low; drive the third pin high; clock the fourth pin low (¢, since first clock pin is
always ¢,). clock the fifth pin high (¢2): and sense the sixth and seventh pins and

. expect low values.
At the end of the line, since two pins were sensed, we find two error han-
- dling displays. Both displays point to error message 0, and since both contain

the unique identifier 5, they are two bits of the same value expected from a port.
The sixth pin in the line is sensed for bit 14 of the value and the seventh pin in
the line is sensed for bit 15 (the final bit) of the value. The value is active-high
since the code in the first display is a space, and the code in the second display
is an f. (It can also be inferred from these two error handling displays that the
sensed pins beleng to an 10port declared as segmented 8 by 2 with Isb output
first and valid on ¢; ~ bits 0-13 were probably sensed in the preceding lines.)

The first test vector is the inilialization vector, autornatically generated by
ICTEST. The final test vector is terminated by a line of asterisks.

The line after the asterisks specifies the number of prototype error mes-
sages. Lach prototype error message includes the filename and linc of the
relevant test step in the source code, and the original expression from which the
test value was computed. An example of a prolotype crror message is as follows:

testl.ict 29 0 1 i%

1% is Lthe expression from which the expected value for the output port was com-
puted, on line 29 of test l.ict. The output port is indicated by the fourth entry in
the line, the 1. This number is an index inlo the 10port names that were
declared in the bond statement, counting from 0; it is Lhe second bonded port in
this example. The third entry in the line is 0 for a sense test step and i for a
store tost step. '

An example of a prototype crror message pertaining to a store test step is:

‘ tesllict 291 1 i



. The value sensed at Lthe output port will be stored into the variable €. The other
information is as above. ‘
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A CLOCKING DISCIPLINE
FOR TWO-PHIASE DIGITAL SYSTEMS
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ABSTRACT

A two-phase clocking discipline for digital ICs can
guarantec frccdom from clock skew, critical
races, and other timing probiems. In this paper,
we present such a discipline: a notation, compo-
:itifm rules, and early results from verification
ools. :

INTRODUCTION

Sooner or later a designer of digital circuits must
face the problems of clock skew, critical races,
and hazards. Genecrally he does a timing analysis
that uses the tedious and error-prone process of
calculatinf delays and deriving timing diagrams
to check for errors. Alternatively, he may per-
form timing simulations to test a circuit for a
representative set of inputs, a process that may
Jeave errors undetected.

This paper dcscribes a diflerent approach: to
guarantec correct operation despile uncertainty
about delays in the circuit. The result is a clock-
discipline that dcals with timing abstractions
only. It is not based on delay calculations; it is
only concerned with correct, synchronous opera-
tion at some clock rate®.
The examples we present are drawn from nMOS
IC design. However, most of the ideas are appli-
cable to any two-phase digital system.

THE CLOCKING DISCIPLINE

This clocking discipline is a method for preduc-
ing circuits that are [rec from timing errors. It
consists of two main parts: a notation for signal
types, and composition rules for legal circuits.
In effect, the notation and rules define a syntax
of clocking-corrcct circuils that can be checked
by auditing tools, analagous to the syntax and
type checking done for computer programs.

A design that follows the discipline is guaranteed
to have no crrors duc to clock skew, critical
races, or hazards. A morc accurate simulation
results: a circuit that is {rce from timing crrors
can be simulated without fcar of faulty race
predictions.

This rescarch was sponsored by DoD ARPA under contract
MDA £03-79-C-0600.

*This philosophy 13 also shared by sell-limed asynchronous
clreuts '3, _

Stanford University

Assumptions

The clocking discipline rests on three :asic

assumptions:

1) All input and initial values are digital.

2) The system is two-phese and synchronovs.

3) All logic and wiring celays are positive and
bounded (less than some fixed maxmum
value). No knowledge of relative celays
among circuit paths is used.

The first assumption is important. The disc.tline

guarantees continued dig:tal operation, k.. jt

needs an initial starting point and ¢gital inz .-s.

The second requirement has two bases. Firs, a

two-phase clocked system is a very prea-.ical

method for designing most MOS Cs'. Se:2nd,
and more importantly, it can be shown the: two
fhases are needed to avoid critical races if rela-

ive delays between different paths are k-

nown?.

The final assumption arises from the gcz! of

immunity to clock skew and races. To acx.eve

this goal the discipline must insure a desig- will
work under all possible circuit delay cond:.:zrs.

Acs:ordmgly, we must not assume any giver cir-

cuit path is faster or slower that any other cath.

This assumption is especially important {:- IC

designs where wiring delays can pctentially e a

dominant factor and are unknown until laycit is

finished.

This assumption gives rise to anotker const=aint
as well. To insure finite delays and digital s:znals
the class of allowable combinational logic ~ust
be restricted. Combinational logic cannot -ave
an{ unclocked feedback loops. Such loops zan
otentially oscillate, with no bounded se:iling
ime. .

Notation

A notation of signal types and clocks derves
from. these assumptions. To motivate the n:ta-
tion, .consider the dynamic latch shown in Foure
1. The input signal gnust satisfy timing rec..re-
ments with respect to the clock (#) to ersure
that the pass transistor will properly latch the
fnput value. In particular. the input musi be
valid in a window around the falhng edge oF ¢y,
rrovndiléq setup and hold times reguired by the
atch. Such a signhal becomes valid on phase 1,
denoted vp,.
Figure 2 illustrates a representative set of clock-
tyfcs. Clock tvpes {; and qualified ¢) are sig2-
nals that establish the time and sequence
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What timing ..guarantecs "latching”
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Figure 1. Ay, clocked dynamic latch.

references for the data Ly(fcs (valid ¢ and stable
¢). The two sets (clock and data) are separate, A
clock signal is never a valid data signal. This
reflecls the fact that a clock cannot salisly the
setup and hold time requirements with respect
to another clock withoul a race.
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Figure 2. Some representative clockin
types, showing the sequence of events. tf
vi g{md s stand for qualified, valid, and
stable.
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Note that all the signal types are invariant given
arbitrary but bounded skew and delay. For
example, a vy, signal is valid some delay after ¢,
rises. By stretching the ¢, period, we can
guarantec that the vy, signal is settled before the
setup time required by a ¢, latch. Similarly, by
stretching the gap between ¢, falling and ¢ ris-
ing, we can guarantee suflicient hold time in the
face of clock skew.

Composition Rules

Now let us investigate some of the properties of
these signals. Wilh a little thought we can see
that none of the data signals change types when
they go through combinational logic. Further-
more, combinational logic that has all its inputs

Xvy, => 7v
Xs:: => Zs::
(a)

{Vn =; g-swz
89y =2 /Sy,
(b)

.

e

sy, will have outputs thut are sy, (see Figure Uni.

A memory clement formed by a clocked pass
transistor and inverter will change the signal
type (sce Figure 3b). If the input is ve, or sy, the
output is spy. This is the foundation of Lhe Lwe-
phase clouking discipline. yp-clocked storage
nodes are timc-bounding clcments. They are tge
points where values must have settled in time,
and where values are held (and in some sense
converted) for the opposile phase.

Note that an sy, signal may not change value dur-
ing the entirc ¢, period. " When an sy, signa! is

ed with a ¢, or qy, clock (see Figure Uc), we
get an output that fits the definition of a qy,
clock. The output cannot glitch. It cither mim-
ics a ¢, clock or remains low as shown in Figure 2.

The properties described above form composi-
tion rules for building clocking-correct circuits.
They are the basic rules we can use to create a
syntax of legal circuits.

A Simple Clocking Discipline

A simple clock_ingl discipline can be construcled
with only the six timing Lypes ¢, v Qv Q72 St
and sy, and the composition rules shown in Fig-
ure 3. A legal circuit comprises an interconnec-
tion of memory elements and combinational logic
such that all inputs to memory elements receive
signals of the proger types: clocks to the clock
inputs and stable data signals to the data inputs.
These structuring rules are equivalent Lo requir-
ing that the circuit can be two-colored¢, one
color for », and sy, paths, another for ¢, and si,
All together, the notation and rules define a syn-
tax of clocking-correct circuits (see Figure 4).

"

1,89, 'I ME XSy, CL Z,S¢2
CL )

ZeSp) - XSy, N; /3872
T T

-Figure 4. A t-ypical two-phase finite state

machine show the syntax and consistency

:‘fnthe clocking types and composition
es.

An analysis of the small example in Fiﬁure 5 will
give the rcader some feel for the utility of the

' "
xo—a bz e ey L,

Xvyp, is illegal
#1 =2 4qp
(c)

Figure 3. Composition rules for a) combinational logic with bounded de-
lays, b) memory ciements, and ¢) qualificd clocks. £ ounded de




clocking discipline. The figure shows a memory
element with storage wt node 3. ‘The node is
periodically driven through Tl or T2 Will this

clrcuit work?

'. P en vusaatem
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Figure 5. An example for analysis using
the clocking discipline.

Let us examine the top branch first. G1 has two
inputs: ¢, and Asz.. It does not fit any of the
composition rules given in Figure 3, so it is jlle-
5&1.. An sy, signal can change value several times
uring the ¢ period. The output at N1 is a
"glitchy” qualified clock that can destroy the
value stored at N3 Co

In the bottom branch, the inputs to G2 do fit the
rule shown in Figure 3¢, so N2 is qp,. However, a
qe, signal is not allowed as input to T2: only vy,
and sy, signals may be latched by a memory-ele~
ment. The race belween the falling edges ol Eqy,
and Cqy, through G2 makes the value stored at
N2 indeterminate.

It should be clear that if signals A and C were
both sy, the circuit would work and fit within the
clocking discipline. This example shows some of
the uselulness of the discipline. The clocking dis-
cipline becomes increasingly valuable as the cir-
cuits analyzed become bigger and more complex.

The simple disciplinc described so far is too res-
trictive for MOS IC designs. In practice we have
found it necessary to include such basic tech-
niques as precharging, sharing of bus lines across
clock phases, and [eedback for static memory
elements. These techniques have introduced new
pitfalls (such as charge-sharing), but they are
caught by the auditing tools described next.

Auditing Tools

The clocking disciﬁline can help a designer pro-
duce cleancr, clocking-correct circuits, but mis-
takes will still happen. Auditing tools can elim-
inate thosc misln{:cs. These tools look for such
errors as clocks usced ay data, data signals used
on the wrong phase, etc. They also nafz charge
sharing, lcedback loops, and the like for extra
attention from the designer.

Once a design has passed the auditing tools it
should be completely free from clock skew and

. effect on the final output.

race problems. A unit deln{ simulator® will now
ndcquutclﬁ predict the oulcome of any races
because they are not critical races—they have no

It would be nice if the circuit could also be
exactly modeled by a switch sirnulation. Unlor-
tunatcly, there dre still a few remaining prob-
lems, ¢.g., drive figcht (a multiplexor thal allows
two gate outruts Lo fight each other), and charge
leakage off of a storage node.

The clocking discipline and auditing tools could
reclude these problems, but the added restric-
ons would be costly. For example, we could

eliminate the danger of charge leaknge by

requlrlnf: all memory clements to be roefreshed
every clock cycle. Currently, the designer is

responsible for avoiding Lhese problems. A

switch simulator that could dectect these condi-

tions, combined with the clocking discipline,
could guarantec a completely accurate func-
tional simulation of a design's operation.

Results
The clocking discipline has been tested on eight
student and rescarch IC projects. During the

. design phase these projects made use of prelim-
k

inary clocking discipline concepts, but the audit-
ing tools were not yet available. Furthermore,
time constraints prevented all but a few from
aoing even minimal simulation before fabrica-
on.

During the Winter quarter of 1982 the fabricated
ICs were received and complete electrical tests
and simulations were done. At this point the
raper designs were also checked with the audit-
ng tools. The resulis are shown in Table 1.

Result number

Clocking, simulation and chip ok

Non-{atal clocking error; simulation and chip ok
Fatal clocking error; simulation could detect
Fatal clocking error; simulation could not detect

- NN

Table 1. Results of testing eight IC
designs with auditing tools, simulation,
and clectrical tests.

The experience with these designs has demon-
strated that the clocking discipline is an effective
and practical technique. The auditing tools are
particularly useful because many errors can be
caught at an ecarly stage, before simulation.

It is interesting to note the types of errors found.
In two cases non-fatal timing crrors were flagged
that pointed out some student misconceplions
about precharged logic. - Fortunately the mis-
takes only affected the performance of the chips
rather than their operation. Three designs had
fatal timing errors. In two of these cases addi-
tional simulation could have caught the error.




However, the Lhird case had previously ponc
through extensive simulation and was expected
to work. This design had a critical race. The
simulator predicted 1t would work, but the actual
chip failed. After the fuct, the auditing tools pin-
ointcd the location and nature of the race. In
¢ of the race. In the fulure, the auditing tools
will be used before simulation and {obrication.

The auditing check only tukes sbout 5 to 10 CPU
seconds on a VAX 11-780 for a design with 1000
transistors. The run lime increases lincarly with
the numbcr of transistors. .

CONCLUSION

The different facets of Lhe clocking discipline
have all proven to be useful. First, the signal
notation is a valuable aid in teaching, analyzing
and designing two-phasc circuits. Second, the
composition rules and auditing tools guarantee
that a desipkn will be free from timing errors due
to clock skew, races, or hazards as well as
flagging other potential problems for cxtira atten-
on.

The clocking discipline is a practical technique
that guarantees clocking-correct designs, and
more accurate simulations. The result will be
reduced design time, fewer design iterations, and
cheaper working designs.
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The High Yield Memory chip (HYM) was designed at Stanford to
test our newest design tools. The chip was explicitly designed to be
highly testable and to correct for single bit hard errors. The
results of extensive testing of the chips are recorded in this
report. The report consists of sections that describe the tests and
then seclions that describe the resuits of applying the tests to
chips from different fabrication efforts.
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The initial tests were performed on 12 chips from Mosis run M18N. Of these
chips, 4 had storages times of several seconds, 6 had storage times of 500us,
and two had storage times of 50us. Given the speed of our tester, only the four
with storage times over a second were reasonably testable. Of the four '‘good"
chips, one was perfect. Another had a single row that malfunctioned and could
be corrected by the error correction circuitry. The other two chips had failures
that were serious enough to make the chips useless. On one, the precharge
failed and on the other the addressing shift register has some failure that makes
it impossible to access all of the memory.

While it was encouraging to have one perfect chip, the results as a whole are
disturbing. Firstly, the great range of storage times (5 orders of magnitude) is
not reflected in any of the parameters returned by Mosis. Secondly, many of the
testing circuits failed in ways that suggest breaks in relatively short lines
(although we haven't been able to see such breaks) and this suggests a high
defect density. Finally, the chip was designed to be very testable but it still
required a great effort to locate the problems — and we still have no real indica-
tion of how good our design was.

Update for run MIDV: this time we had 14 chips that worked out of 30
tested. Of course, a few new mysteries were added to our collection, and have
not been resolved.

run number dead no storage nodefect correctable
time
M18N 12 1 8 1 3
MiDV 30 3 5 13 14
Storage time

Since our tester is relatively slow (circa 4 microseconds per pin toggle),
storage time is critical to the successful operation of tests. The storage time
test consists of loading 1's into a bank of latclies in the encoder/decoder, and
then gating the output of the latches onto the pads. By using a scope, one can
then watch the outpul pad go high and then, one storage time later, go low.



chip | time
1 7
3 5
4 3
5 B
bl 40e-6
b2 | 400e-6
b3 | 400e-6
b4 400e-6
b5 400e-6
b6 40e-6
b7 400e-6
bB 400e-6

Address unit

The address section of the HYM chip is a'shift-register. In normal operation
a single one is clocked through the shift-register. The column that contains the
one-bit is '‘selected’’, and can be put in either read or write mode. There are
three tests for the address unit.

Test 1 enables all of the pass transistors in the shift-register (E1 = {, ER =
1) and thereby converts the shift-register into a chain of 100 consecutive invert-
ers. The basic operation of each inverter, and the continuity of the chain, can be
checked by setting the input to the chain to 0 and checking that a 0 is output,
and by setting the input to 1 and checking that a 1 is output.

Test 2 clocks the shift-register and sets the input to alternate 1's and O's.
By checking for alternating 0's and 1's at the outputs, the pass transistors can
be checked, as well as various timing bugs.

Test 3 sets the shift-register to 0's, sets the inpul to 1, and then clocks 50
0's through the shift-register. The output is then checked to see if it has <9 O's
followed by a 1 and then another 0. This test verifies that the shift-register has
the correct length and will perform as required for the operation of the
memory.

chip | test] | test2 | test3 1
1 Yy y Yy
3 n n n
4 y Y y
5 Y y y

bl y Y Y
b2 Y y Yy
b3 V4 y h'A
b4 Y y y
b5 Y Y y
b6 Y y Y
b7 y Y Yy
b8 Y y y




Eneodor/Docodor

The encoder/decodor unit has two latches: an in-going latch and an out-
going latch. Thero are Lwo multiploxors: ono connects the tri-state pads to one
of the error signal, true out-going data or complemented out-gning data, and the
other connecls tho word slection nultiplexor to either the true in-going or com-
plemented in-going data. Thore are throwe tests for the encoder/decoder.

Test 1 cheocks the basic oporation of the latches and their associated multi-
plexors. This is dono by loading a value (all 0's or all 1's) into the in-going
lalches. On the next cyclo, the data is read oul by multiplexing it from the out-
puls of tha in-going lalches, through the out-going latches and the out-going
latchos' multiploxor to tho pads. This tests that the two multiplexors work to
someo extent {does not Lest the operation of the error signal output), that the
in-going latches can store data, that all four inverters associated with the
latches work and that there are no breaks in the multiplexor control lines (since
the multiplexer control lines have output pads on their non-driven ends).

Tesl 2 checks the operation of the error detection circuitry. This is done by
loading the oul-going lalches with zeros, except for one latch that has a one.
The in-going lalches are then loaded with zeros, and the multiplexor is switched
to output the error signals to the pads. This checks that each exclusive-or gate
functions and that the error sighal can be multiplexed onto the output pads. In
addition, the ''ok" line is checked each time to make sure that it is correctly
or-ing the oulputs of the exclusive-or gales. A side eflect of this test is to check,
once more that the in-going latches have storage time and also that the out-
going latches have storage time. Also, an additional series of tests are per-
formed in which the out-going latches are loaded with all 1's except for a single
0. Finally, a test with no errors is included to verify that the "ok’ line is not
stuck at 0.

Test 3 choecks that the "'preio’” signal can in fact precharge the word selec-
tion multiplexor.
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chip | testt | tesi2 | test3
1 Y y Yy
3 Y nz y
4 hd Yy Y
5 y* n# y
bl - - -
b2 -- - --
b3 o - -
b4 - - -
bs - - -
b6 -- = -=
b7 - - -
b8 ~- -- ~-

Invalid due to other errors
Detected some malfunction in the compi line.
Can't read error values, suggesting that the erro line is broken.

A failure when the error value is 1111101111, This value does not seem
to be stored or remembered correctly, but this may be a read-out
problem, since the error value is returned correctly. The value read
out is 1111100111; error value is correctly 0000010000.

. T



Precharge
The bio lines can be precharged. There are two Lests of the precharge logic.
Testl is a basic test that first allows the bio lines to discharge, and then

precharges them. The circuit is considered OK if the bio lines are first 0 and
then 1. One test is made for each position of the selector.

Test2 is a diagnostic test, based on a hypothesis that the memory may have
some shorts between the column select lines and the bio lines. This test is basi-
cally the same as testl except that column selects are aiso set to 1's.

Chip | testl | test2
1 Y 4
3 y* y*
4 n n
5 y# Y%

b1 - ==
b2 - --
b3 - L -
b4 o~ -
b5 -- -=
b6 -- --
b7 - --
b8 - --

-- Invalid due to errors in previous tests

*  word 4, bit 2 would not precharge

# word 1, bit 7 would not precharge

7% word 1, bit 7 is directly controlled by read enable




Testing the memory plane

The raw test accesses the memory plane in raw mode (no error correction
used). Bach word is written as 0's, and read back. This tests for bits that are
stuck-al 1. Then, each word is written as 1's, and read back. This tests for bits
that are stuck-at 0. The results are plotted to look like the memory plane.
There is one square per mermory cell. If the cell is empty, it had no stuck-ats. 1f
the cell contains an upward pointing arrow, the cell had a stuck-at 0; a down-
ward pointing arrow, a stuck-at 1.

The error correction test, like the raw test, writes words consisling of ones
and then zeros into the memory. Unlike the raw plane tests, the error correc-
tion circuitry is activaled and should correct any single bit errors.

chin—! raw . correcti ng |

1 Y Y
3 (1) (2)
4 - -
5 (3). 4
bl - -
b2 -- -
b3 - -
b4 - -
b5 — -
b6 -- -
b7 - o~
bB - -

- Tests invalid due to other problems

(1) Have one row stuck-at 0 (address problems, however)
(2) TFully correct, except that don't have full addressing
(3) One row with a cross-point failure.
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Appcendix A
Tesling suggcestions

When starting to test a chip the bond statement may well be incorreect. A
few simple tests will pinpoint some problems here. First, check that all input
pads can be driven both high and low. Second, check that all output pads are
stuck at either 1 or 0. Thirdly, if tri-statc enables are externally accessible,
test Lri-state pads in both input and output modes {also, watch power drain).

Each test should start by checking Vdd, Ground and substrate if used. No
point in testing an unpowered chip. Declare Vdd to be acfivelo and reverse
senscs on tests. Otherwise, vdd will be initialized to 0.

When running simulations, do not initialize the simulation. This will ensure
that your test sequence drives every node that should be driven. The presence
of X's is a sure indication that your test is incomplete.

Always run you test program against the simulation before trying the real
circuit.

On a real circuit, undriven nodes seem to leak to 0, but don't rely on it.

Run your tests from the outside in. Bugs in the outer level have a strange
way of fouling up more interior levels.

Write down your test resuils as you go and keep copies of your test pro-
grams. Il's surprising how often you will want to go back and retest some outer
level — possibly in greater detail.

The tester has a nasty habit of remembering pin values from one test to the
next. This may give the appearance of abnormally long storage times. If you
run a test that relies on charge leaking off (eg. precharge testing), you should
explicitly deactivate the contols and wait a few seconds.
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Abstracl

The LIS is a new algorithm for two-layer routing of rece .
" tangular repions (arca or switchbox routing). It routes
regions with the pins fixed on all four sides and, if it fails to
complete a routing, returns an estimate of the arca it

noeds to complete the problem. A new measure for

evaluating the diflicully of arca routing problems affords a
comparison between the LRS and the Lee algorithms; the
1RS has unifot rly superior performance.

lnu;oduction LA

In the past, most chip routing has been done using channel
routers. (A channel is a rectanguler routing region with
pins placed on two opposing sides. Nets may run out the
other \wo ends of the routing region, but the pin locations
on these sides are not fixed.}) In routing custom VLS] we
have found that channel routing does not perform accept-
ably. Custom chips often contain large rectangular routing
reglons with pins located on all four sides. In addilion,
these regions often do not have a preferred horizontal or
vertical direction. These types of problems are not suited
for channel routing algorithms.

Several alporithms have been developed to attack Lthe area
rouling problem, the Lee! and Iightower? algorithms being
the most well known. In order to analyze the performance
of these algorithms, we need to be able to describe area
routing problems and to measure thewr difficulty. In chan-
nel rouling, problems are oflen described 1n terms of their
congestion factor and constraint graphs. Algorithm perfor-
mance can then be measured in terms of how close to the
channel congestion factor the algorithm compleies the
channel wiring. These measures, however, do not directly
carry over Lo thc area routing problem,

Propertics of an Arca Mcasure

There are several important properties of area routing
that an area routing mncasure must capture. Unlike many
channels, where there is no fixed area linutation (nomi-
nally, channel width can expand forever), arca routing
problems typically have a defionte fixed size. Thus, instead
of talking aboul a number such as the congestion factor
for a problem, one must talk about the problem's intrinsic
difliculty. ‘This measure of ditliculty should decreaso as
the arca ol the problem is expanded. The measure should
also be independent of any particular routing alporithm,
thereby providing 